3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Downstream Processing, Formulation Development and Antithrombotic Evaluation of Microbial Nattokinase.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present research work describes the downstreaming of nattokinase (NK) produced by Bacillus subtilis under solid state fermentation; and the role of efficient oral formulation of purified NK in the management of thrombotic disorders. Molecular weight of purified NK was estimated to be 28 kDa with specific activity of 504.4 FU/mg. Acid stable nattokinase loaded chitosan nanoparticles (sNLCN) were fabricated for oral delivery of this enzyme. Box-Behnken design (BBD) was employed to investigate and validate the effect of process (independent) variables on the quality attributes (dependent variables) of nanoparticles. The integrity, conformational stability and preservation of fibrinolytic activity of NK (in both free and sNLCN forms) were established by SDS-PAGE, CD analysis and in vitro clot lytic examination, respectively. A 'tail thrombosis model' demonstrated significant decrease in frequency of thrombosis in Wistar rats upon peroral administration of sNLCN in comparison with negative control and free NK group. Furthermore, coagulation analysis, namely the measurement of prothrombin and activated partial thromboplastin time illustrated that sNLCN showed significantly (p < 0.001) higher anti-thrombotic potential in comparison to the free NK. Further, sNLCN showed anti-thrombotic profile similar to warfarin. This study signifies the potential of sNLCN in oral delivery of NK for the management of thrombotic disorders.

          Related collections

          Author and article information

          Journal
          J Biomed Nanotechnol
          Journal of biomedical nanotechnology
          1550-7033
          1550-7033
          Jul 2015
          : 11
          : 7
          Article
          26307844
          13b4cdbb-2ccb-4690-b1c0-1891d9c67c2b
          History

          Comments

          Comment on this article