40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Laser capture microdissection in Ectocarpus siliculosus: the pathway to cell-specific transcriptomics in brown algae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Laser capture microdissection (LCM) facilitates the isolation of individual cells from tissue sections, and when combined with RNA amplification techniques, it is an extremely powerful tool for examining genome-wide expression profiles in specific cell-types. LCM has been widely used to address various biological questions in both animal and plant systems, however, no attempt has been made so far to transfer LCM technology to macroalgae. Macroalgae are a collection of widespread eukaryotes living in fresh and marine water. In line with the collective effort to promote molecular investigations of macroalgal biology, here we demonstrate the feasibility of using LCM and cell-specific transcriptomics to study development of the brown alga Ectocarpus siliculosus. We describe a workflow comprising cultivation and fixation of algae on glass slides, laser microdissection, and RNA amplification. To illustrate the effectiveness of the procedure, we show qPCR data and metrics obtained from cell-specific transcriptomes generated from both upright and prostrate filaments of Ectocarpus.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Small silencing RNAs: an expanding universe.

          Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The Ectocarpus genome and the independent evolution of multicellularity in brown algae.

            Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comprehensive comparative analysis of RNA sequencing methods for degraded or low input samples

              RNA-Seq is an effective method to study the transcriptome, but can be difficult to apply to scarce or degraded RNA from fixed clinical samples, rare cell populations, or cadavers. Recent studies have proposed several methods for RNA-Seq of low quality and/or low quantity samples, but their relative merits have not been systematically analyzed. Here, we compare five such methods using metrics relevant to transcriptome annotation, transcript discovery, and gene expression. Using a single human RNA sample, we constructed and sequenced ten libraries with these methods and two control libraries. We find that the RNase H method performed best for low quality RNA, and confirmed this with actual degraded samples. RNase H can even effectively replace oligo (dT) based methods for standard RNA-Seq. SMART and NuGEN had distinct strengths for low quantity RNA. Our analysis allows biologists to select the most suitable methods and provides a benchmark for future method development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                10 February 2015
                2015
                : 6
                : 54
                Affiliations
                [1] 1Department of Plant Sciences, University of Oxford Oxford, UK
                [2] 2CNRS, Sorbonne Université, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff Roscoff, France
                Author notes

                Edited by: Catherine Anne Kidner, University of Edinburgh, UK

                Reviewed by: Olivier De Clerck, Ghent University, Belgium; Samuel Elias Wuest, University of Zurich, Switzerland

                *Correspondence: Denis Saint-Marcoux, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK e-mail: denis.saint-marcoux@ 123456plants.ox.ac.uk

                This article was submitted to Plant Evolution and Development, a section of the journal Frontiers in Plant Science.

                †These authors have contributed equally to this work.

                Article
                10.3389/fpls.2015.00054
                4322613
                13be2302-a881-4135-96de-5ed64f57d8e3
                Copyright © 2015 Saint-Marcoux, Billoud, Langdale and Charrier.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 November 2014
                : 21 January 2015
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 56, Pages: 11, Words: 8625
                Categories
                Plant Science
                Technology Report Article

                Plant science & Botany
                laser capture microdissection,cell-specific transcriptomics,cell differentiation,seaweed,brown algae

                Comments

                Comment on this article