Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eukaryotic Richness in the Abyss: Insights from Pyrotag Sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The deep sea floor is considered one of the most diverse ecosystems on Earth. Recent environmental DNA surveys based on clone libraries of rRNA genes confirm this observation and reveal a high diversity of eukaryotes present in deep-sea sediment samples. However, environmental clone-library surveys yield only a modest number of sequences with which to evaluate the diversity of abyssal eukaryotes.

          Methodology/Principal Findings

          Here, we examined the richness of eukaryotic DNA in deep Arctic and Southern Ocean samples using massively parallel sequencing of the 18S ribosomal RNA (rRNA) V9 hypervariable region. In very small volumes of sediments, ranging from 0.35 to 0.7 g, we recovered up to 7,499 unique sequences per sample. By clustering sequences having up to 3 differences, we observed from 942 to 1756 Operational Taxonomic Units (OTUs) per sample. Taxonomic analyses of these OTUs showed that DNA of all major groups of eukaryotes is represented at the deep-sea floor. The dinoflagellates, cercozoans, ciliates, and euglenozoans predominate, contributing to 17%, 16%, 10%, and 8% of all assigned OTUs, respectively. Interestingly, many sequences represent photosynthetic taxa or are similar to those reported from the environmental surveys of surface waters. Moreover, each sample contained from 31 to 71 different metazoan OTUs despite the small sample volume collected. This indicates that a significant faction of the eukaryotic DNA sequences likely do not belong to living organisms, but represent either free, extracellular DNA or remains and resting stages of planktonic species.

          Conclusions/Significance

          In view of our study, the deep-sea floor appears as a global DNA repository, which preserves genetic information about organisms living in the sediment, as well as in the water column above it. This information can be used for future monitoring of past and present environmental changes.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          The new higher level classification of eukaryotes with emphasis on the taxonomy of protists.

          This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic studies. We propose a scheme that is based on nameless ranked systematics. The vocabulary of the taxonomy is updated, particularly to clarify the naming of groups that have been repositioned. We recognize six clusters of eukaryotes that may represent the basic groupings similar to traditional "kingdoms." The multicellular lineages emerged from within monophyletic protist lineages: animals and fungi from Opisthokonta, plants from Archaeplastida, and brown algae from Stramenopiles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Method for Studying Protistan Diversity Using Massively Parallel Sequencing of V9 Hypervariable Regions of Small-Subunit Ribosomal RNA Genes

            Background Massively parallel pyrosequencing of amplicons from the V6 hypervariable regions of small-subunit (SSU) ribosomal RNA (rRNA) genes is commonly used to assess diversity and richness in bacterial and archaeal populations. Recent advances in pyrosequencing technology provide read lengths of up to 240 nucleotides. Amplicon pyrosequencing can now be applied to longer variable regions of the SSU rRNA gene including the V9 region in eukaryotes. Methodology/Principal Findings We present a protocol for the amplicon pyrosequencing of V9 regions for eukaryotic environmental samples for biodiversity inventories and species richness estimation. The International Census of Marine Microbes (ICoMM) and the Microbial Inventory Research Across Diverse Aquatic Long Term Ecological Research Sites (MIRADA-LTERs) projects are already employing this protocol for tag sequencing of eukaryotic samples in a wide diversity of both marine and freshwater environments. Conclusions/Significance Massively parallel pyrosequencing of eukaryotic V9 hypervariable regions of SSU rRNA genes provides a means of estimating species richness from deeply-sampled populations and for discovering novel species from the environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial population structures in the deep marine biosphere.

              The analytical power of environmental DNA sequences for modeling microbial ecosystems depends on accurate assessments of population structure, including diversity (richness) and relative abundance (evenness). We investigated both aspects of population structure for microbial communities at two neighboring hydrothermal vents by examining the sequences of more than 900,000 microbial small-subunit ribosomal RNA amplicons. The two vent communities have different population structures that reflect local geochemical regimes. Descriptions of archaeal diversity were nearly exhaustive, but despite collecting an unparalleled number of sequences, statistical analyses indicated additional bacterial diversity at every taxonomic level. We predict that hundreds of thousands of sequences will be necessary to capture the vast diversity of microbial communities, and that different patterns of evenness for both high- and low-abundance taxa may be important in defining microbial ecosystem dynamics.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                4 April 2011
                : 6
                : 4
                : e18169
                Affiliations
                [1 ]Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
                [2 ]Laboratoire de Biologie Virtuelle, Université de Nice, UMR 6543, Nice, France
                [3 ]Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
                [4 ]Departamento de Engenharia Electronica e Informatica, Universidade do Algarve, Faro, Portugal
                [5 ]Marine Biological Laboratory, The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachusetts, United States of America
                [6 ]Station Biologique de Roscoff, UMR 7144, Roscoff, France
                Argonne National Laboratory, United States of America
                Author notes

                Conceived and designed the experiments: JP. Performed the experiments: BL LAZ. Analyzed the data: RC DB HRS LG JP. Contributed reagents/materials/analysis tools: LAZ LG. Wrote the paper: JP RC LAZ.

                Article
                PONE-D-10-05593
                10.1371/journal.pone.0018169
                3070721
                21483744
                13e0c234-adef-483e-b248-a82d1fc807b2
                Pawlowski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 August 2010
                : 22 February 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Metagenomics
                Ecology
                Ecological Environments
                Marine Environments
                Ecological Metrics
                Species Richness
                Marine Biology
                Marine Ecology
                Microbiology
                Protozoology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article