35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reconsideration of In-Silico siRNA Design Based on Feature Selection: A Cross-Platform Data Integration Perspective

      research-article
      1 , 1 , 2 , 1 , * , 2 , 3 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA interference via exogenous short interference RNAs (siRNA) is increasingly more widely employed as a tool in gene function studies, drug target discovery and disease treatment. Currently there is a strong need for rational siRNA design to achieve more reliable and specific gene silencing; and to keep up with the increasing needs for a wider range of applications. While progress has been made in the ability to design siRNAs with specific targets, we are clearly at an infancy stage towards achieving rational design of siRNAs with high efficacy. Among the many obstacles to overcome, lack of general understanding of what sequence features of siRNAs may affect their silencing efficacy and of large-scale homogeneous data needed to carry out such association analyses represents two challenges. To address these issues, we investigated a feature-selection based in-silico siRNA design from a novel cross-platform data integration perspective. An integration analysis of 4,482 siRNAs from ten meta-datasets was conducted for ranking siRNA features, according to their possible importance to the silencing efficacy of siRNAs across heterogeneous data sources. Our ranking analysis revealed for the first time the most relevant features based on cross-platform experiments, which compares favorably with the traditional in-silico siRNA feature screening based on the small samples of individual platform data. We believe that our feature ranking analysis can offer more creditable suggestions to help improving the design of siRNA with specific silencing targets. Data and scripts are available at http://csbl.bmb.uga.edu/publications/materials/qiliu/siRNA.html.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Small silencing RNAs: an expanding universe.

          Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The promises and pitfalls of RNA-interference-based therapeutics.

            The discovery that gene expression can be controlled by the Watson-Crick base-pairing of small RNAs with messenger RNAs containing complementary sequence - a process known as RNA interference - has markedly advanced our understanding of eukaryotic gene regulation and function. The ability of short RNA sequences to modulate gene expression has provided a powerful tool with which to study gene function and is set to revolutionize the treatment of disease. Remarkably, despite being just one decade from its discovery, the phenomenon is already being used therapeutically in human clinical trials, and biotechnology companies that focus on RNA-interference-based therapeutics are already publicly traded.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor.

              Chemically synthesised 21-23 bp double-stranded short interfering RNAs (siRNA) can induce sequence-specific post-transcriptional gene silencing, in a process termed RNA interference (RNAi). In the present study, several siRNAs synthesised against different sites on the same target mRNA (human Tissue Factor) demonstrated striking differences in silencing efficiency. Only a few of the siRNAs resulted in a significant reduction in expression, suggesting that accessible siRNA target sites may be rare in some human mRNAs. Blocking of the 3'-OH with FITC did not reduce the effect on target mRNA. Mutations in the siRNAs relative to target mRNA sequence gradually reduced, but did not abolish mRNA depletion. Inactive siRNAs competed reversibly with active siRNAs in a sequence-independent manner. Several lines of evidence suggest the existence of a near equilibrium kinetic balance between mRNA production and siRNA-mediated mRNA depletion. The silencing effect was transient, with the level of mRNA recovering fully within 4-5 days, suggesting absence of a propagative system for RNAi in humans. Finally, we observed 3' mRNA cleavage fragments resulting from the action of the most effective siRNAs. The depletion rate-dependent appearance of these fragments argues for the existence of a two-step mRNA degradation mechanism.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                24 May 2012
                : 7
                : 5
                : e37879
                Affiliations
                [1 ]Department of Bioinformatics, Tongji University, Shanghai, China
                [2 ]Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
                [3 ]College of Computer Science and Technology, Jilin University, Changchun, China
                University of Iowa, United States of America
                Author notes

                Conceived and designed the experiments: QL ZWC YX. Performed the experiments: QL HZ JC. Analyzed the data: HZ JC. Contributed reagents/materials/analysis tools: HZ. Wrote the paper: QL HZ JC ZWC YX.

                Article
                PONE-D-12-01700
                10.1371/journal.pone.0037879
                3360065
                22655076
                1408d87e-c21e-4272-b64b-8247fb713d6a
                Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 January 2012
                : 25 April 2012
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Biochemistry
                Nucleic Acids
                RNA
                RNA interference
                Small Molecules
                Biotechnology
                Small Molecules
                Computational Biology
                Biological Data Management
                Sequence Analysis
                Systems Biology
                Computer Science
                Algorithms
                Computer Modeling
                Software Engineering
                Software Tools

                Uncategorized
                Uncategorized

                Comments

                Comment on this article