68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The New Era of Treatment for Obesity and Metabolic Disorders: Evidence and Expectations for Gut Microbiome Transplantation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Key Points

          • The microbiome has been implicated in the development of obesity.

          • Conventional therapeutic methods have limited effectiveness for the treatment of obesity and prevention of related complications.

          • Gut microbiome transplantation may represent an alternative and effective therapy for the treatment of obesity.

          Obesity has reached epidemic proportions. Despite a better understanding of the underlying pathophysiology and growing treatment options, a significant proportion of obese patients do not respond to treatment. Recently, microbes residing in the human gastrointestinal tract have been found to act as an “endocrine” organ, whose composition and functionality may contribute to the development of obesity. Therefore, fecal/gut microbiome transplantation (GMT), which involves the transfer of feces from a healthy donor to a recipient, is increasingly drawing attention as a potential treatment for obesity. Currently the evidence for GMT effectiveness in the treatment of obesity is preliminary. Here, we summarize benefits, procedures, and issues associated with GMT, with a special focus on obesity.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system.

          The mammalian gastrointestinal tract harbors a complex ecosystem consisting of countless bacteria in homeostasis with the host immune system. Shaped by evolution, this partnership has potential for symbiotic benefit. However, the identities of bacterial molecules mediating symbiosis remain undefined. Here we show that, during colonization of animals with the ubiquitous gut microorganism Bacteroides fragilis, a bacterial polysaccharide (PSA) directs the cellular and physical maturation of the developing immune system. Comparison with germ-free animals reveals that the immunomodulatory activities of PSA during B. fragilis colonization include correcting systemic T cell deficiencies and T(H)1/T(H)2 imbalances and directing lymphoid organogenesis. A PSA mutant of B. fragilis does not restore these immunologic functions. PSA presented by intestinal dendritic cells activates CD4+ T cells and elicits appropriate cytokine production. These findings provide a molecular basis for host-bacterial symbiosis and reveal the archetypal molecule of commensal bacteria that mediates development of the host immune system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The microbiome in inflammatory bowel disease: current status and the future ahead.

            Studies of the roles of microbial communities in the development of inflammatory bowel disease (IBD) have reached an important milestone. A decade of genome-wide association studies and other genetic analyses have linked IBD with loci that implicate an aberrant immune response to the intestinal microbiota. More recently, profiling studies of the intestinal microbiome have associated the pathogenesis of IBD with characteristic shifts in the composition of the intestinal microbiota, reinforcing the view that IBD results from altered interactions between intestinal microbes and the mucosal immune system. Enhanced technologies can increase our understanding of the interactions between the host and its resident microbiota and their respective roles in IBD from both a large-scale pathway view and at the metabolic level. We review important microbiome studies of patients with IBD and describe what we have learned about the mechanisms of intestinal microbiota dysfunction. We describe the recent progress in microbiome research from exploratory 16S-based studies, reporting associations of specific organisms with a disease, to more recent studies that have taken a more nuanced view, addressing the function of the microbiota by metagenomic and metabolomic methods. Finally, we propose study designs and methodologies for future investigations of the microbiome in patients with inflammatory gut and autoimmune diseases in general. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Energy contributions of volatile fatty acids from the gastrointestinal tract in various species.

              E BERGMAN (1990)
              The VFA, also known as short-chain fatty acids, are produced in the gastrointestinal tract by microbial fermentation of carbohydrates and endogenous substrates, such as mucus. This can be of great advantage to the animal, since no digestive enzymes exist for breaking down cellulose or other complex carbohydrates. The VFA are produced in the largest amounts in herbivorous animal species and especially in the forestomach of ruminants. The VFA, however, also are produced in the lower digestive tract of humans and all animal species, and intestinal fermentation resembles that occurring in the rumen. The principal VFA in either the rumen or large intestine are acetate, propionate, and butyrate and are produced in a ratio varying from approximately 75:15:10 to 40:40:20. Absorption of VFA at their site of production is rapid, and large quantities are metabolized by the ruminal or large intestinal epithelium before reaching the portal blood. Most of the butyrate is converted to ketone bodies or CO2 by the epithelial cells, and nearly all of the remainder is removed by the liver. Propionate is similarly removed by the liver but is largely converted to glucose. Although species differences exist, acetate is used principally by peripheral tissues, especially fat and muscle. Considerable energy is obtained from VFA in herbivorous species, and far more research has been conducted on ruminants than on other species. Significant VFA, however, are now known to be produced in omnivorous species, such as pigs and humans. Current estimates are that VFA contribute approximately 70% to the caloric requirements of ruminants, such as sheep and cattle, approximately 10% for humans, and approximately 20-30% for several other omnivorous or herbivorous animals. The amount of fiber in the diet undoubtedly affects the amount of VFA produced, and thus the contribution of VFA to the energy needs of the body could become considerably greater as the dietary fiber increases. Pigs and some species of monkey most closely resemble humans, and current research should be directed toward examining the fermentation processes and VFA metabolism in those species. In addition to the energetic or nutritional contributions of VFA to the body, the VFA may indirectly influence cholesterol synthesis and even help regulate insulin or glucagon secretion. In addition, VFA production and absorption have a very significant effect on epithelial cell growth, blood flow, and the normal secretory and absorptive functions of the large intestine, cecum, and rumen. The absorption of VFA and sodium, for example, seem to be interdependent, and release of bicarbonate usually occurs during VFA absorption.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                19 February 2016
                2016
                : 6
                : 15
                Affiliations
                [1] 1Liggins Institute, The University of Auckland Auckland, New Zealand
                [2] 2Department of Infectious Diseases, Counties Manukau Health Auckland, New Zealand
                [3] 3Gravida: National Centre for Growth and Development Auckland, New Zealand
                Author notes

                Edited by: Daniel Hassett, University of Cincinnati, College of Medicine, USA

                Reviewed by: Marina Santic', University of Rijeka, Croatia; V. K. Viswanathan, The University of Arizona, USA; Lily Q. Dong, University of Texas Health Science Center at San Antonio, USA

                *Correspondence: Wayne S. Cutfield w.cutfield@ 123456auckland.ac.nz ;
                Article
                10.3389/fcimb.2016.00015
                4759265
                26925392
                143d9d7d-db6a-4d17-951a-261ba6abfbed
                Copyright © 2016 Jayasinghe, Chiavaroli, Holland, Cutfield and O'Sullivan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 October 2015
                : 25 January 2016
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 144, Pages: 11, Words: 10001
                Funding
                Funded by: University of Auckland 10.13039/501100001537
                Categories
                Microbiology
                Review

                Infectious disease & Microbiology
                gut microbiome transplantation,microbiome,microbiota,obesity,treatment

                Comments

                Comment on this article