1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Evaporation Fluxes for Pesticides and Low Volatile Hazardous Materials Based on Evaporation Kinetics of Net Liquids

      research-article
      , ,
      ACS Omega
      American Chemical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Evaporation is the phase transition process that plays a significant role in many spheres of life and science. Volatilization of hazardous materials, pesticides, petroleum spills, etc., impacts the environment and biosphere. Predicting evaporation fluxes under specific environmental conditions is challenging from theoretical and empirical points of view. A new practical method for estimating fluxes is proposed based on our experimental results and previously published data. It is demonstrated that some parameters in theoretical equations for near-equilibrium evaporation can be estimated from experiments, and these formulas can be exploited to predict steady-state evaporation fluxes in the air in a range of 8 orders of magnitude based on a single experiment carried out for nontoxic volatile compounds.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Evaporation of pure liquid sessile and spherical suspended drops: a review.

          A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by a contact line and characterized by contact angle, contact radius and drop height. Diffusion-controlled evaporation of a sessile drop in an ambient gas is an important topic of interest because it plays a crucial role in many scientific applications such as controlling the deposition of particles on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, drop wise cooling, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials in the last decades. This paper presents a review of the published articles for a period of approximately 120 years related to the evaporation of both sessile drops and nearly spherical droplets suspended from thin fibers. After presenting a brief history of the subject, we discuss the basic theory comprising evaporation of micrometer and millimeter sized spherical drops, self cooling on the drop surface and evaporation rate of sessile drops on solids. The effects of drop cooling, resultant lateral evaporative flux and Marangoni flows on evaporation rate are also discussed. This review also has some special topics such as drop evaporation on superhydrophobic surfaces, determination of the receding contact angle from drop evaporation, substrate thermal conductivity effect on drop evaporation and the rate evaporation of water in liquid marbles. Copyright © 2011 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation.

            Although the Hertz-Knudsen (HK) relation is often used to correlate evaporation data, the relation contains two empirical parameters (the evaporation and condensation coefficients) that have inexplicably been found to span 3 orders of magnitude. Explicit expressions for these coefficients have yet to be determined. This review will examine sources of error in the HK relation that have led to the coefficients' scatter. Through an examination of theoretical, experimental, and molecular dynamics simulation studies of evaporation, this review will show that the HK relation is incomplete, since it is missing an important physical concept: the coupling between the vapor and liquid phases during evaporation. The review also examines a modified HK relation, obtained from the quantum-mechanically based statistical rate theory (SRT) expression for the evaporation flux and applying a limit to it in which the thermal energy is dominant. Explicit expressions for the evaporation and condensation coefficients are defined in this limit, with the surprising result that the coefficients are not bounded by unity. An examination is made with 127 reported evaporation experiments of water and of ethanol, leading to a new physical interpretation of the coefficients. The review concludes by showing how seemingly small simplifications, such as assuming thermal equilibrium across the liquid-vapor interface during evaporation, can lead to the erroneous predictions from the HK relation that have been reported in the literature.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Evaporation rate of spills of hydrocarbons and petroleum mixtures.

                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                12 April 2024
                23 April 2024
                : 9
                : 16
                : 18617-18623
                Affiliations
                [1]Institute of Chemistry, University of Silesia in Katowice , 9 Szkolna Street, 40-006 Katowice, Poland
                Author notes
                Author information
                https://orcid.org/0000-0003-4423-2201
                https://orcid.org/0000-0003-0275-2751
                https://orcid.org/0000-0001-9463-8627
                Article
                10.1021/acsomega.4c01405
                11044173
                14ab57ab-a2a6-476c-8af1-44ea327e21d3
                © 2024 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 13 February 2024
                : 05 April 2024
                : 29 March 2024
                Categories
                Article
                Custom metadata
                ao4c01405
                ao4c01405

                Comments

                Comment on this article