1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantifying the impact of shape uncertainty on predicted arrhythmias

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort.

            Studies of atrial fibrillation (AF) due to atrial tachycardia have provided insights into the remodeling mechanisms by which "AF begets AF" but have not elucidated the substrate that initially supports AF before remodeling occurs. We studied the effects of congestive heart failure (CHF), an entity strongly associated with clinical AF, on atrial electrophysiology in the dog and compared the results with those in dogs subjected to rapid atrial pacing (RAP; 400 bpm) with a controlled ventricular rate (AV block plus ventricular pacemaker at 80 bpm). CHF induced by 5 weeks of rapid ventricular pacing (220 to 240 bpm) increased the duration of AF induced by burst pacing (from 8+/-4 seconds in control dogs to 535+/-82 seconds; P<0.01), similar to the effect of 1 week of RAP (713+/-300 seconds). In contrast to RAP, CHF did not alter atrial refractory period, refractoriness heterogeneity, or conduction velocity at a cycle length of 360 ms; however, CHF dogs had a substantial increase in the heterogeneity of conduction during atrial pacing (heterogeneity index in CHF dogs, 2. 76+/-0.16 versus 1.46+/-0.10 for control and 1.51+/-0.06 for RAP dogs; P<0.01) owing to discrete regions of slow conduction. Histological examination revealed extensive interstitial fibrosis (connective tissue occupying 12.8+/-1.9% of the cross-sectional area) in CHF dogs compared with control (0.8+/-0.3%) and RAP (0. 9+/-0.2%) dogs. Experimental CHF strongly promotes the induction of sustained AF by causing interstitial fibrosis that interferes with local conduction. The substrates of AF in CHF are very different from those of atrial tachycardia-related AF, with important potential implications for understanding, treating, and preventing AF related to CHF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model.

              The mechanisms underlying many important properties of the human atrial action potential (AP) are poorly understood. Using specific formulations of the K+, Na+, and Ca2+ currents based on data recorded from human atrial myocytes, along with representations of pump, exchange, and background currents, we developed a mathematical model of the AP. The model AP resembles APs recorded from human atrial samples and responds to rate changes, L-type Ca2+ current blockade, Na+/Ca2+ exchanger inhibition, and variations in transient outward current amplitude in a fashion similar to experimental recordings. Rate-dependent adaptation of AP duration, an important determinant of susceptibility to atrial fibrillation, was attributable to incomplete L-type Ca2+ current recovery from inactivation and incomplete delayed rectifier current deactivation at rapid rates. Experimental observations of variable AP morphology could be accounted for by changes in transient outward current density, as suggested experimentally. We conclude that this mathematical model of the human atrial AP reproduces a variety of observed AP behaviors and provides insights into the mechanisms of clinically important AP properties.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Computers in Biology and Medicine
                Computers in Biology and Medicine
                Elsevier BV
                00104825
                February 2023
                February 2023
                : 153
                : 106528
                Article
                10.1016/j.compbiomed.2022.106528
                1527a30f-fe42-4a29-b721-609cc46bc2c8
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article