4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.

          Related collections

          Most cited references304

          • Record: found
          • Abstract: found
          • Article: not found

          Polyphenols: food sources and bioavailability.

          Polyphenols are abundant micronutrients in our diet, and evidence for their role in the prevention of degenerative diseases such as cancer and cardiovascular diseases is emerging. The health effects of polyphenols depend on the amount consumed and on their bioavailability. In this article, the nature and contents of the various polyphenols present in food sources and the influence of agricultural practices and industrial processes are reviewed. Estimates of dietary intakes are given for each class of polyphenols. The bioavailability of polyphenols is also reviewed, with particular focus on intestinal absorption and the influence of chemical structure (eg, glycosylation, esterification, and polymerization), food matrix, and excretion back into the intestinal lumen. Information on the role of microflora in the catabolism of polyphenols and the production of some active metabolites is presented. Mechanisms of intestinal and hepatic conjugation (methylation, glucuronidation, sulfation), plasma transport, and elimination in bile and urine are also described. Pharmacokinetic data for the various polyphenols are compared. Studies on the identification of circulating metabolites, cellular uptake, intracellular metabolism with possible deconjugation, biological properties of the conjugated metabolites, and specific accumulation in some target tissues are discussed. Finally, bioavailability appears to differ greatly between the various polyphenols, and the most abundant polyphenols in our diet are not necessarily those that have the best bioavailability profile. A thorough knowledge of the bioavailability of the hundreds of dietary polyphenols will help us to identify those that are most likely to exert protective health effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Membrane transporters in drug development.

            Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labelling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Normal and pathologic concentrations of uremic toxins.

              An updated review of the existing knowledge regarding uremic toxins facilitates the design of experimental studies. We performed a literature search and found 621 articles about uremic toxicity published after a 2003 review of this topic. Eighty-seven records provided serum or blood measurements of one or more solutes in patients with CKD. These records described 32 previously known uremic toxins and 56 newly reported solutes. The articles most frequently reported concentrations of β2-microglobulin, indoxyl sulfate, homocysteine, uric acid, and parathyroid hormone. We found most solutes (59%) in only one report. Compared with previous results, more recent articles reported higher uremic concentrations of many solutes, including carboxymethyllysine, cystatin C, and parathyroid hormone. However, five solutes had uremic concentrations less than 10% of the originally reported values. Furthermore, the uremic concentrations of four solutes did not exceed their respective normal concentrations, although they had been previously described as uremic retention solutes. In summary, this review extends the classification of uremic retention solutes and their normal and uremic concentrations, and it should aid the design of experiments to study the biologic effects of these solutes in CKD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                13 January 2022
                2021
                : 12
                : 802539
                Affiliations
                [1] 1 Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark , Odense, Denmark
                [2] 2 Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki , Helsinki, Finland
                [3] 3 Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki , Helsinki, Finland
                [4] 4 Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki , Helsinki, Finland
                Author notes

                Edited by: Michael Zimmermann, European Molecular Biology Laboratory (EMBL) Heidelberg, Germany

                Reviewed by: Csilla Özvegy-Laczka, Hungarian Academy of Sciences (MTA), Hungary

                Walter Jäger, University of Vienna, Austria

                *Correspondence: Noora Sjöstedt, noora.sjostedt@ 123456helsinki.fi
                [ ‡ ]

                These authors have contributed equally to this work

                This article was submitted to Drug Metabolism and Transport, a section of the journal Frontiers in Pharmacology

                Article
                802539
                10.3389/fphar.2021.802539
                8793843
                35095509
                156df9f0-bab1-47ba-81ec-2134109f3bab
                Copyright © 2022 Järvinen, Deng, Kiander, Sinokki, Kidron and Sjöstedt.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 October 2021
                : 06 December 2021
                Funding
                Funded by: Suomen Kulttuurirahasto , doi 10.13039/501100003125;
                Funded by: Academy of Finland , doi 10.13039/501100002341;
                Funded by: Syöpäsäätiö , doi 10.13039/501100010711;
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                abc transporter,acyl glucuronide,drug-drug interaction (ddi),enterohepatic recycling,solute carrier,sulfotransferase (sult),transporter inhibition,udp-glucuronosyltransferase (ugt)

                Comments

                Comment on this article