3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Immunoassay and amperometric biosensor approaches for the detection of deltamethrin in seawater

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Neurobehavioral toxicology of pyrethroid insecticides in adult animals: a critical review.

          Pyrethroids are pesticides with high selectivity for insects. In order to identify strengths and gaps in the database for pyrethroid neurobehavioral toxicology, we have critically analyzed the data from peer-reviewed literature. This review includes dose-response data that have been recently generated demonstrating consistent findings for low-dose, acute, oral exposure to pyrethroids in small rodents. All pyrethroids tested (i.e., about twenty compounds), regardless of structure, produce a decrease in motor activity in a variety of test protocols. The range of relative potencies varies more than two orders of magnitude, and thresholds for motor activity were found well below doses that produce overt signs of poisoning. Six compounds (allethrin, permethrin, cis-permethrin, deltamethrin, cypermethrin, and fenvalerate) impair schedule-controlled operant responding, seven compounds (pyrethrum, bifenthrin, S-bioallethrin, permethrin, beta-cyfluthrin, cypermethrin, and deltamethrin) decrease grip strength, and two compounds (deltamethrin and alpha-cypermethrin) produce incoordination using the rotarod. In addition, while compounds lacking an alpha-cyano group (e.g., cismethrin, permethrin, bifenthrin) induce an increase in acoustic-evoked startle response amplitude, cyano compounds (e.g., deltamethrin, cypermethrin, cyfluthrin) produce the opposite outcome. Other endpoints (e.g., tremor intensity, sensory response) have been only occasionally explored. A synthesis of the neurobehavioral evidence relating to the action of pyrethroids indicates that some differences in the experimental findings across compounds are also present in the low-effective dose range. For risk assessment purposes, a strategy that takes into account data from an array of neurobehavioral endpoints is needed to capture the heterogeneity of pyrethroid-induced adverse effects and accurately inform policy decisions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunosensors for detection of pesticide residues.

            Immunosensors are biosensors that use antibodies or antigens as the specific sensing element and provide concentration-dependent signals. There is great potential in the applications of immunosensing technologies for rapid detection of pesticide residues in food and environment. This paper presents an overview of various transduction systems, such as electrochemical, optical, piezoelectric, and nanomechanics methods, which have been reported in the literature in the design and fabrication of immunosensors for pesticide detection. Various immobilization protocols used for formation of a biorecognition interface are also discussed. In addition, techniques of regeneration, signal amplification, miniaturization, and antibodies are evaluated for the development and applications of these immunosensors. It can be concluded that despite some limitations of the immunosensing technologies, these immuosensors for pesticide monitoring are becoming more and more relevant in environmental and food analysis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples.

              Techniques for immunosensing like surface plasmon resonance (SPR) may respond to the need for rapid screening methods to improve food safety. This paper describes the development of a novel portable six channel SPR biosensor based on the plasmon of gold diffraction grating surface for simultaneous multianalyte antibiotic detection in milk samples. Representative congeners from three important antibiotic families (FQs: fluoroquinolones, SAs: sulfonamides and CAP: phenicols) were chosen for this study. The chips are covalently biofunctionalized with haptenized proteins by means of a previously formed mixed self assembled monolayer (m-SAM) prepared using two types of mercapto alkyl reagents containing polyethyleneglycol (PEG) units. The samples or standards are mixed with specific polyclonal antibodies and injected into the sensor device. The detectability accomplished is very good (i.e. in buffer, enrofloxacin, 0.30 μg L(-1); sulfapyridine, 0.29 μg L(-1); and chloramphenicol, 0.26 μg L(-1)) and whole milk samples can be analyzed directly without clean-up steps, by just diluting the sample five times with water to remove non-specific interferences caused by the matrix. Although the detectability of CAP regarding the MRPL (minimum required performance limit) is slightly compromised by the dilution, the detectability accomplished by FQs and SAs was far below the maximum residue levels (MRLs) established by the European Union. Copyright © 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Analytical and Bioanalytical Chemistry
                Anal Bioanal Chem
                Springer Science and Business Media LLC
                1618-2642
                1618-2650
                September 2018
                July 7 2018
                September 2018
                : 410
                : 23
                : 5923-5930
                Article
                10.1007/s00216-018-1209-1
                15cda9b4-efad-41ad-b210-6f00aa372473
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article