15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cancer cell behaviors mediated by dysregulated pH dynamics at a glance

      1 , 2 , 1
      Journal of Cell Science
      The Company of Biologists

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Dysregulated pH is a common characteristic of cancer cells, as they have an increased intracellular pH (pHi) and a decreased extracellular pH (pHe) compared with normal cells. Recent work has expanded our knowledge of how dysregulated pH dynamics influences cancer cell behaviors, including proliferation, metastasis, metabolic adaptation and tumorigenesis. Emerging data suggest that the dysregulated pH of cancers enables these specific cell behaviors by altering the structure and function of selective pH-sensitive proteins, termed pH sensors. Recent findings also show that, by blocking pHi increases, cancer cell behaviors can be attenuated. This suggests ion transporter inhibition as an effective therapeutic approach, either singly or in combination with targeted therapies. In this Cell Science at a Glance article and accompanying poster, we highlight the interconnected roles of dysregulated pH dynamics in cancer initiation, progression and adaptation.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Sensors and regulators of intracellular pH.

          Protons dictate the charge and structure of macromolecules and are used as energy currency by eukaryotic cells. The unique function of individual organelles therefore depends on the establishment and stringent maintenance of a distinct pH. This, in turn, requires a means to sense the prevailing pH and to respond to deviations from the norm with effective mechanisms to transport, produce or consume proton equivalents. A dynamic, finely tuned balance between proton-extruding and proton-importing processes underlies pH homeostasis not only in the cytosol, but in other cellular compartments as well.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FAK in cancer: mechanistic findings and clinical applications.

            Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase that is overexpressed and activated in several advanced-stage solid cancers. FAK promotes tumour progression and metastasis through effects on cancer cells, as well as stromal cells of the tumour microenvironment. The kinase-dependent and kinase-independent functions of FAK control cell movement, invasion, survival, gene expression and cancer stem cell self-renewal. Small molecule FAK inhibitors decrease tumour growth and metastasis in several preclinical models and have initial clinical activity in patients with limited adverse events. In this Review, we discuss FAK signalling effects on both tumour and stromal cell biology that provide rationale and support for future therapeutic opportunities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy.

              Cancer immunotherapies, such as immune checkpoint blockade or adoptive T-cell transfer, can lead to durable responses in the clinic, but response rates remain low due to undefined suppression mechanisms. Solid tumors are characterized by a highly acidic microenvironment that might blunt the effectiveness of antitumor immunity. In this study, we directly investigated the effects of tumor acidity on the efficacy of immunotherapy. An acidic pH environment blocked T-cell activation and limited glycolysis in vitro. IFNγ release blocked by acidic pH did not occur at the level of steady-state mRNA, implying that the effect of acidity was posttranslational. Acidification did not affect cytoplasmic pH, suggesting that signals transduced by external acidity were likely mediated by specific acid-sensing receptors, four of which are expressed by T cells. Notably, neutralizing tumor acidity with bicarbonate monotherapy impaired the growth of some cancer types in mice where it was associated with increased T-cell infiltration. Furthermore, combining bicarbonate therapy with anti-CTLA-4, anti-PD1, or adoptive T-cell transfer improved antitumor responses in multiple models, including cures in some subjects. Overall, our findings show how raising intratumoral pH through oral buffers therapy can improve responses to immunotherapy, with the potential for immediate clinical translation.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Cell Science
                The Company of Biologists
                1477-9137
                0021-9533
                February 15 2017
                February 15 2017
                : 130
                : 4
                : 663-669
                Affiliations
                [1 ]Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
                [2 ]Department of Biological Sciences, San José State University, San José, CA 95192, USA
                Article
                10.1242/jcs.195297
                5339414
                28202602
                15d47252-54bf-4e8e-bd07-d558a176c2f4
                © 2017

                http://www.biologists.com/user-licence-1-1

                History

                Comments

                Comment on this article