96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Positive-strand RNA viruses, a large group including human pathogens such as SARS-coronavirus (SARS-CoV), replicate in the cytoplasm of infected host cells. Their replication complexes are commonly associated with modified host cell membranes. Membrane structures supporting viral RNA synthesis range from distinct spherular membrane invaginations to more elaborate webs of packed membranes and vesicles. Generally, their ultrastructure, morphogenesis, and exact role in viral replication remain to be defined. Poorly characterized double-membrane vesicles (DMVs) were previously implicated in SARS-CoV RNA synthesis. We have now applied electron tomography of cryofixed infected cells for the three-dimensional imaging of coronavirus-induced membrane alterations at high resolution. Our analysis defines a unique reticulovesicular network of modified endoplasmic reticulum that integrates convoluted membranes, numerous interconnected DMVs (diameter 200–300 nm), and “vesicle packets” apparently arising from DMV merger. The convoluted membranes were most abundantly immunolabeled for viral replicase subunits. However, double-stranded RNA, presumably revealing the site of viral RNA synthesis, mainly localized to the DMV interior. Since we could not discern a connection between DMV interior and cytosol, our analysis raises several questions about the mechanism of DMV formation and the actual site of SARS-CoV RNA synthesis. Our data document the extensive virus-induced reorganization of host cell membranes into a network that is used to organize viral replication and possibly hide replicating RNA from antiviral defense mechanisms. Together with biochemical studies of the viral enzyme complex, our ultrastructural description of this “replication network” will aid to further dissect the early stages of the coronavirus life cycle and its virus-host interactions.

          Author Summary

          Viruses with a positive-stranded RNA genome replicate in the cytoplasm of infected host cells. Their replication is driven by a membrane-bound viral enzyme complex that is commonly associated with modified intracellular membranes. Little is understood about the formation and architecture of these replication structures and their exact role in viral RNA synthesis. We used electron microscopy and tomography for the three-dimensional imaging of the membrane alterations induced by severe acute respiratory syndrome (SARS)-coronavirus, a member of the virus group with the largest RNA genome known to date. Previously, coronaviruses were reported to induce large numbers of isolated “double-membrane vesicles” (DMVs). However, our present studies reveal an elaborate reticulovesicular network of modified endoplasmic reticulum membranes with which SARS-coronavirus replicative proteins are associated. The lumen of this unique membrane network contains numerous large (diameter 250–300 nm) “inner vesicles,” which were formerly thought to reside in isolated DMVs. Intriguingly, although the interior of these vesicles does not appear to be connected to the cytosol, it labels abundantly for double-stranded RNA, which presumably is present at the site of viral RNA synthesis. The ultrastructural dissection of this elaborate “replication network” shows how coronaviruses extensively reorganize the host cell's membrane infrastructure, to coordinate their replication cycle, and possibly also hide replicating RNA from antiviral defense mechanisms.

          Abstract

          Positive-strand RNA virus replication is associated with membranes in the host cell's cytoplasm. Here, advanced 3D electron microscopy reveals that SARS-coronavirus induces an elaborate reticulovesicular network of modified ER membranes that supports viral RNA synthesis.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found

          Mechanisms and enzymes involved in SARS coronavirus genome expression.

          A novel coronavirus is the causative agent of the current epidemic of severe acute respiratory syndrome (SARS). Coronaviruses are exceptionally large RNA viruses and employ complex regulatory mechanisms to express their genomes. Here, we determined the sequence of SARS coronavirus (SARS-CoV), isolate Frankfurt 1, and characterized key RNA elements and protein functions involved in viral genome expression. Important regulatory mechanisms, such as the (discontinuous) synthesis of eight subgenomic mRNAs, ribosomal frameshifting and post-translational proteolytic processing, were addressed. Activities of three SARS coronavirus enzymes, the helicase and two cysteine proteinases, which are known to be critically involved in replication, transcription and/or post-translational polyprotein processing, were characterized. The availability of recombinant forms of key replicative enzymes of SARS coronavirus should pave the way for high-throughput screening approaches to identify candidate inhibitors in compound libraries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The lipid droplet is an important organelle for hepatitis C virus production.

            The lipid droplet (LD) is an organelle that is used for the storage of neutral lipids. It dynamically moves through the cytoplasm, interacting with other organelles, including the endoplasmic reticulum (ER). These interactions are thought to facilitate the transport of lipids and proteins to other organelles. The hepatitis C virus (HCV) is a causative agent of chronic liver diseases. HCV capsid protein (Core) associates with the LD, envelope proteins E1 and E2 reside in the ER lumen, and the viral replicase is assumed to localize on ER-derived membranes. How and where HCV particles are assembled, however, is poorly understood. Here, we show that the LD is involved in the production of infectious virus particles. We demonstrate that Core recruits nonstructural (NS) proteins and replication complexes to LD-associated membranes, and that this recruitment is critical for producing infectious viruses. Furthermore, virus particles were observed in close proximity to LDs, indicating that some steps of virus assembly take place around LDs. This study reveals a novel function of LDs in the assembly of infectious HCV and provides a new perspective on how viruses usurp cellular functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modification of intracellular membrane structures for virus replication

              Key Points Plus-stranded RNA viruses induce large membrane structures that might support the replication of their genomes. Similarly, cytoplasmic replication of poxviruses (large DNA viruses) occurs in associated membranes. These membranes originate from the endoplasmic reticulum (ER) or endosomes. Membrane vesicles that support viral replication are induced by a number of RNA viruses. Similarly, the poxvirus replication site is surrounded by a double-membraned cisterna that is derived from the ER. Analogies to autophagy have been proposed since the finding that autophagy cellular processes involve the formation of double-membrane vesicles. However, molecular evidence to support this hypothesis is lacking. Membrane association of the viral replication complex is mediated by the presence of one or more viral proteins that contain sequences which associate with, or integrate into, membranes. Replication-competent membranes might contain viral or cellular proteins that contain amphipathic helices, which could mediate the membrane bending that is required to form spherical vesicles. Whereas poxvirus DNA replication occurs inside the ER-enclosed site, for most RNA viruses the topology of replication is not clear. Preliminary results for some RNA viruses suggest that their replication could also occur inside double-membrane vesicles. We speculate that cytoplasmic replication might occur inside sites that are 'enwrapped' by an ER-derived cisterna, and that these cisternae are open to the cytoplasm. Thus, RNA and DNA viruses could use a common mechanism for replication that involves membrane wrapping by cellular cisternal membranes. We propose that three-dimensional analyses using high-resolution electron-microscopy techniques could be useful for addressing this issue. High-throughput small-interfering-RNA screens should also shed light on molecular requirements for virus-induced membrane modifications.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                September 2008
                16 September 2008
                : 6
                : 9
                : e226
                Affiliations
                [1 ] Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
                [2 ] Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
                Fred Hutchinson Cancer Research Center, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: e.j.snijder@ 123456lumc.nl
                Article
                08-PLBI-RA-0857R2 plbi-06-09-10
                10.1371/journal.pbio.0060226
                2535663
                18798692
                16690afb-c75a-4b19-92b4-f25086a272bf
                Copyright: © 2008 Knoops et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 March 2008
                : 4 August 2008
                Page count
                Pages: 18
                Categories
                Research Article
                Biochemistry
                Cell Biology
                Infectious Diseases
                Molecular Biology
                Virology
                Custom metadata
                Knoops K, Kikkert M, van den Worm SHE, Zevenhoven-Dobbe JC, van der Meer Y, et al. (2008) SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6(9): e226. doi:10.1371/journal.pbio.0060226

                Life sciences
                Life sciences

                Comments

                Comment on this article