1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The neural basis of tadpole transport in poison frogs

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parental care has evolved repeatedly and independently across animals. While the ecological and evolutionary significance of parental behaviour is well recognized, underlying mechanisms remain poorly understood. We took advantage of behavioural diversity across closely related species of South American poison frogs (Family Dendrobatidae) to identify neural correlates of parental behaviour shared across sexes and species. We characterized differences in neural induction, gene expression in active neurons and activity of specific neuronal types in three species with distinct care patterns: male uniparental, female uniparental and biparental. We identified the medial pallium and preoptic area as core brain regions associated with parental care, independent of sex and species. The identification of neurons active during parental care confirms a role for neuropeptides associated with care in other vertebrates as well as identifying novel candidates. Our work is the first to explore neural and molecular mechanisms of parental care in amphibians and highlights the potential for mechanistic studies in closely related but behaviourally variable species to help build a more complete understanding of how shared principles and species-specific diversity govern parental care and other social behaviour.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Galanin neurons in the medial preoptic area govern parental behavior

          Mice display robust, stereotyped behaviors toward pups: virgin males typically attack pups, while virgin females and sexually experienced males and females display parental care. We show here that virgin males genetically impaired in vomeronasal sensing do not attack pups and are parental. Further, we uncover a subset of galanin-expressing neurons in the medial preoptic area (MPOA) that are specifically activated during male and female parenting, and a different subpopulation activated during mating. Genetic ablation of MPOA galanin neurons results in dramatic impairment of parental responses in males and females and affects male mating. Optogenetic activation of these neurons in virgin males suppresses inter-male and pup-directed aggression and induces pup grooming. Thus, MPOA galanin neurons emerge as an essential regulatory node of male and female parenting behavior and other social responses. These results provide an entry point to a circuit-level dissection of parental behavior and its modulation by social experience.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional circuit architecture underlying parental behaviour

            Summary Parenting is essential for the survival and wellbeing of mammalian offspring but we lack a circuit-level understanding of how distinct components of this behaviour are orchestrated. Here we investigate how Galanin-expressing neurons in the medial preoptic area (MPOAGal) coordinate motor, motivational, hormonal and social aspects of parenting. These neurons integrate inputs from a large number of brain areas, whose activation depends on the animal’s sex and reproductive state. Subsets of MPOAGal neurons form discrete pools defined by their projection sites. While the MPOAGal population is active during all episodes of parental behaviour, individual pools are tuned to characteristic aspects of parenting. Optogenetic manipulation of MPOAGal projections mirrors this specificity, affecting discrete parenting components. This functional organization, reminiscent of the control of motor sequences by pools of spinal cord neurons, provides a new model for how discrete elements of a social behaviour are generated at the circuit level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular profiling of activated neurons by phosphorylated ribosome capture.

              The mammalian brain is composed of thousands of interacting neural cell types. Systematic approaches to establish the molecular identity of functional populations of neurons would advance our understanding of neural mechanisms controlling behavior. Here, we show that ribosomal protein S6, a structural component of the ribosome, becomes phosphorylated in neurons activated by a wide range of stimuli. We show that these phosphorylated ribosomes can be captured from mouse brain homogenates, thereby enriching directly for the mRNAs expressed in discrete subpopulations of activated cells. We use this approach to identify neurons in the hypothalamus regulated by changes in salt balance or food availability. We show that galanin neurons are activated by fasting and that prodynorphin neurons restrain food intake during scheduled feeding. These studies identify elements of the neural circuit that controls food intake and illustrate how the activity-dependent capture of cell-type-specific transcripts can elucidate the functional organization of a complex tissue. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Proceedings of the Royal Society B: Biological Sciences
                Proc. R. Soc. B
                The Royal Society
                0962-8452
                1471-2954
                July 17 2019
                July 24 2019
                July 17 2019
                July 24 2019
                : 286
                : 1907
                : 20191084
                Affiliations
                [1 ]Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
                [2 ]Center for Systems Biology, Harvard University, Cambridge, MA, USA
                [3 ]Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Otonga, Quito, Ecuador
                [4 ]Department of Biology, East Carolina University, Greenville, NC, USA
                Article
                10.1098/rspb.2019.1084
                6661358
                31311480
                166ba8e7-bdd0-4b99-9efe-5b3c3851eab8
                © 2019
                History

                Comments

                Comment on this article