22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined.

          Methods:

          Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens.

          Results:

          Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group.

          Conclusions:

          These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety/compulsive-like behaviors may be driven by greater kappa opioid receptor sensitivity and a hypodopaminergic state of the nucleus accumbens.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway.

          The mesolimbic dopaminergic system has been implicated in mediating the motivational effects of opioids and other drugs of abuse. The site of action of opioids within this system and the role of endogenous opioid peptides in modulating dopamine activity therein remain unknown. Employing the technique of in vivo microdialysis and the administration of highly selective opioid ligands, the present study demonstrates the existence of tonically active and functionally opposing mu and kappa opioid systems that regulate dopamine release in the nucleus accumbens, the major terminal area of A10 dopaminergic neurons. Thus, stimulation of mu-type receptors in the ventral tegmental area, the site of origin of A10 dopaminergic neurons, increases dopamine release whereas the selective blockade of this opioid receptor type results in a significant decrease in basal dopamine release. In contrast, stimulation of kappa-type receptors within the nucleus accumbens decreases dopamine release whereas their selective blockade markedly increases basal dopamine release. These data show that tonic activation of mu and kappa receptors is required for the maintenance of basal dopamine release in the nucleus accumbens. In view of the postulated role of the mesolimbic system in the mediation of drug-induced alterations in mood and affect, such findings may have implications for the treatment of opiate dependence and affective disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Addiction is a Reward Deficit and Stress Surfeit Disorder

            Drug addiction can be defined by a three-stage cycle – binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation – that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain reward and stress systems. Specific neurochemical elements in these structures include not only decreases in reward system function (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF) and dynorphin-κ opioid systems in the ventral striatum, extended amygdala, and frontal cortex (both between-system opponent processes). CRF antagonists block anxiety-like responses associated with withdrawal, block increases in reward thresholds produced by withdrawal from drugs of abuse, and block compulsive-like drug taking during extended access. Excessive drug taking also engages the activation of CRF in the medial prefrontal cortex, paralleled by deficits in executive function that may facilitate the transition to compulsive-like responding. Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for ethanol similar to a CRF1 antagonist. Blockade of the κ opioid system can also block dysphoric-like effects associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress system that contributes to compulsive drug seeking. The loss of reward function and recruitment of brain systems provide a powerful neurochemical basis that drives the compulsivity of addiction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Demon voltammetry and analysis software: analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures.

              The fast sampling rates of fast scan cyclic voltammetry make it a favorable method for measuring changes in brain monoamine release and uptake kinetics in slice, anesthetized, and freely moving preparations. The most common analysis technique for evaluating changes in dopamine signaling uses well-established Michaelis-Menten kinetic methods that can accurately model dopamine release and uptake parameters across multiple experimental conditions. Nevertheless, over the years, many researchers have turned to other measures to estimate changes in dopamine release and uptake, yet to our knowledge no systematic comparison amongst these measures has been conducted. To address this lack of uniformity in kinetic analyses, we have created the Demon Voltammetry and Analysis software suite, which is freely available to academic and non-profit institutions. Here we present an explanation of the Demon Voltammetry acquisition and analysis features, and demonstrate its utility for acquiring voltammetric data under in vitro, in vivo anesthetized, and freely moving conditions. Additionally, the software was used to compare the sensitivity of multiple kinetic measures of release and uptake to cocaine-induced changes in electrically evoked dopamine efflux in nucleus accumbens core slices. Specifically, we examined and compared tau, full width at half height, half-life, T₂₀, T₈₀, slope, peak height, calibrated peak dopamine concentration, and area under the curve to the well-characterized Michaelis-Menten parameters, dopamine per pulse, maximal uptake rate, and apparent affinity. Based on observed results we recommend tau for measuring dopamine uptake and calibrated peak dopamine concentration for measuring dopamine release. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Neuropsychopharmacol
                Int. J. Neuropsychopharmacol
                ijnp
                ijnp
                International Journal of Neuropsychopharmacology
                Oxford University Press (US )
                1461-1457
                1469-5111
                May 2016
                1 December 2015
                : 19
                : 5
                : pyv127
                Affiliations
                Department of Physiology and Pharmacology, Wake Forest School of Medicine , Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center , Charleston, South Carolina (Dr Becker).
                Author notes
                Correspondence: Sara R. Jones, PhD, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 ( srjones@ 123456wakehealth.edu ).
                Article
                10.1093/ijnp/pyv127
                4886667
                26625893
                16ba5df6-c715-480e-adef-d00ed39107e0
                © The Author 2015. Published by Oxford University Press on behalf of CINP.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 23 October 2015
                : 22 November 2015
                : 24 November 2015
                Page count
                Pages: 10
                Funding
                Funded by: National Institute of Drug Abuse http://dx.doi.org/10.13039/100000026
                Funded by: National Institutes of Health http://dx.doi.org/10.13039/100000002
                Award ID: F31 DA03558
                Award ID: T32 AA007565 21
                Award ID: DA006634
                Award ID: UO1 AA020929
                Award ID: P50AA010761
                Award ID: P01 AA021099
                Award ID: R01 AA014445
                Award ID: U01 AA020942
                Categories
                Research Article

                Pharmacology & Pharmaceutical medicine
                anxiety,compulsion,voltammetry,release,uptake
                Pharmacology & Pharmaceutical medicine
                anxiety, compulsion, voltammetry, release, uptake

                Comments

                Comment on this article