Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The mammalian phenotype ontology: enabling robust annotation and comparative analysis.

      Wiley Interdisciplinary Reviews. Systems Biology and Medicine
      Animals, Classification, methods, Data Mining, Disease Models, Animal, Genomics, Humans, Mammals, classification, genetics, Mice, physiology, Mutation, Phenotype, Software, User-Computer Interface

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mouse has long been an important model for the study of human genetic disease. Through the application of genetic engineering and mutagenesis techniques, the number of unique mutant mouse models and the amount of phenotypic data describing them are growing exponentially. Describing phenotypes of mutant mice in a computationally useful manner that will facilitate data mining is a major challenge for bioinformatics. Here we describe a tool, the Mammalian Phenotype Ontology (MP), for classifying and organizing phenotypic information related to the mouse and other mammalian species. The MP Ontology has been applied to mouse phenotype descriptions in the Mouse Genome Informatics Database (MGI, http://www.informatics.jax.org/), the Rat Genome Database (RGD, http://rgd.mcw.edu), the Online Mendelian Inheritance in Animals (OMIA, http://omia.angis.org.au/) and elsewhere. Use of this ontology allows comparisons of data from diverse sources, can facilitate comparisons across mammalian species, assists in identifying appropriate experimental disease models, and aids in the discovery of candidate disease genes and molecular signaling pathways.

          Related collections

          Author and article information

          Journal
          20052305
          2801442
          10.1002/wsbm.44

          Chemistry
          Animals,Classification,methods,Data Mining,Disease Models, Animal,Genomics,Humans,Mammals,classification,genetics,Mice,physiology,Mutation,Phenotype,Software,User-Computer Interface

          Comments

          Comment on this article