14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-based and peptide-carrier nanobiomaterials that we also review.

          Related collections

          Most cited references383

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules

          To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biofilm matrix.

            The microorganisms in biofilms live in a self-produced matrix of hydrated extracellular polymeric substances (EPS) that form their immediate environment. EPS are mainly polysaccharides, proteins, nucleic acids and lipids; they provide the mechanical stability of biofilms, mediate their adhesion to surfaces and form a cohesive, three-dimensional polymer network that interconnects and transiently immobilizes biofilm cells. In addition, the biofilm matrix acts as an external digestive system by keeping extracellular enzymes close to the cells, enabling them to metabolize dissolved, colloidal and solid biopolymers. Here we describe the functions, properties and constituents of the EPS matrix that make biofilms the most successful forms of life on earth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The antibiotic resistance crisis: part 1: causes and threats.

              Decades after the first patients were treated with antibiotics, bacterial infections have again become a threat because of the rapid emergence of resistant bacteria-a crisis attributed to abuse of these medications and a lack of new drug development.
                Bookmark

                Author and article information

                Contributors
                celine.valery@rmit.edu.au
                Journal
                Biophys Rev
                Biophys Rev
                Biophysical Reviews
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1867-2450
                1867-2469
                21 January 2021
                : 1-35
                Affiliations
                [1 ]GRID grid.1017.7, ISNI 0000 0001 2163 3550, School of Health and Biomedical Sciences, , RMIT University, ; Melbourne, Australia
                [2 ]GRID grid.1017.7, ISNI 0000 0001 2163 3550, School of Science, , RMIT University, ; Melbourne, Australia
                [3 ]GRID grid.9654.e, ISNI 0000 0004 0372 3343, School of Chemical Sciences, , University of Auckland, ; Auckland, New Zealand
                Author information
                http://orcid.org/0000-0003-4724-3651
                Article
                784
                10.1007/s12551-021-00784-y
                7817352
                33495702
                175b9125-f2a7-4274-9dc7-1e4a6cf46e5a
                © International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 23 December 2020
                : 7 January 2021
                Funding
                Funded by: Australian Technology Network
                Award ID: LATAM scholarship
                Award Recipient :
                Categories
                Review

                Biophysics
                molecular engineering,antimicrobial peptides,antimicrobial resistance,peptide-target interactions,molecular self-assembly,nanotechnology,biomaterials

                Comments

                Comment on this article