11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Integrity of the Inferior Vestibular Nerve and Posterior Canal BPPV

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The functional integrity of the inferior vestibular nerve (IVN) may be evaluated by the cervical vestibular evoked myogenic potential (cVEMP) response, which requires signal transmission via the nerve. As functional integrity of the IVN innervating the posterior semicircular canal is required to produce the typical positioning vertigo and nystagmus characterizing posterior canal benign paroxysmal positional vertigo (PCBPPV), we hypothesized that normal cVEMPs would be found in most PCBPPV patients. Twenty-four PCBPPV patients participated in a prospective cohort study. All were treated by canal repositioning maneuver and had air-conduction cVEMP and videonystagmography (VNG). Follow-up evaluations including history and otoneurological bedside examination were carried out 1, 3, 6, and 12 months after the initial treatment. At the last follow-up, the patients filled the Dizziness Handicap Inventory (DHI) questionnaire. Normal cVEMPs were recorded in 19 (79%) and were absent in 5 (21%) of the subjects. The average DHI in the patients with normal cVEMP was 16.42 ± 17.99 vs. 0.4 ± 0.89 among those with pathological cVEMP ( p < 0.04, Mann–Whitney test). Thirteen (54%) patients experienced recurrent PCBPPV (rPCBPPV). The average DHI score was significantly higher among patients having recurrence (22.15 ± 18.61) when compared to those with complete cure (2.36 ± 5.98; p < 0.003, Mann–Whitney test). Ten (77%) of the subjects with rPCBPPV had normal and 3 (23%) had pathological cVEMP as compared to 9 (82%) and 2 (18%) subjects in the non-recurrent (nrPCBPPV) group (Fisher's exact test—not significant). cVEMP p13 and n23 wave latencies and amplitudes, inter-aural differences in p13-n23 peak-to-peak amplitudes, and response thresholds did not differ between the groups. No differences were found between the rPCBBPV and nrPCBBPV groups in VNG caloric lateralization and directional preponderance values. We have found that in most cases, PCBPPV symptoms and signs are associated with normal cVEMP response supporting the role of IVN functional integrity. The absent cVEMPs in the minority of patients, although having similar clinical presentation, raise the possibility that the ipsilateral saccule is affected by the same pathology causing degeneration of the utricle macula. Alternatively, lacking inhibitory stimuli from the involved ipsilateral utricle or partial degeneration of the IVN and ganglion could explain the diminished cVEMP response.

          Clinical Trial Registration: The study was registered in ClinicalTrials.gov Internet site (study ID—NCT01004913; https://clinicaltrials.gov/ct2/show/NCT01004913?cond=BPPV&cntry=IL&draw=2&rank=3).

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The Development of the Dizziness Handicap Inventory

          Conventional vestibulometric techniques are inadequate for quantifying the impact of dizziness on everyday life. The 25-item Dizziness Handicap Inventory (DHI) was developed to evaluate the self-perceived handicapping effects imposed by vestibular system disease. The development of the preliminary (37 items) and final versions (25 items) of the DHI are described. The items were subgrouped into three content domains representing functional, emotional, and physical aspects of dizziness and unsteadiness. Cronbach's alpha coefficient was employed to measure reliability based on consistency of the preliminary version. The final version of the DHI was administered to 106 consecutive patients and demonstrated good internal consistency reliability. With the exception of the physical subscale, the mean values for DHI scale scores increased significantly with increases in the frequency of dizziness episodes. Test-retest reliability was high.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vestibular evoked myogenic potentials: past, present and future.

            Since the first description of sound-evoked short-latency myogenic reflexes recorded from neck muscles, vestibular evoked myogenic potentials (VEMPs) have become an important part of the neuro-otological test battery. VEMPs provide a means of assessing otolith function: stimulation of the vestibular system with air-conducted sound activates predominantly saccular afferents, while bone-conducted vibration activates a combination of saccular and utricular afferents. The conventional method for recording the VEMP involves measuring electromyographic (EMG) activity from surface electrodes placed over the tonically-activated sternocleidomastoid (SCM) muscles. The "cervical VEMP" (cVEMP) is thus a manifestation of the vestibulo-collic reflex. However, recent research has shown that VEMPs can also be recorded from the extraocular muscles using surface electrodes placed near the eyes. These "ocular VEMPs" (oVEMPs) are a manifestation of the vestibulo-ocular reflex. Here we describe the historical development and neurophysiological properties of the cVEMP and oVEMP and provide recommendations for recording both reflexes. While the cVEMP has documented diagnostic utility in many disorders affecting vestibular function, relatively little is known as yet about the clinical value of the oVEMP. We therefore outline the known cVEMP and oVEMP characteristics in common central and peripheral disorders encountered in neuro-otology clinics. Copyright 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characteristics and clinical applications of vestibular-evoked myogenic potentials.

              A recent technique of assessing vestibular function, the vestibular-evoked myogenic potential (VEMP), is an otolith-mediated, short-latency reflex recorded from averaged sternocleidomastoid electromyography in response to intense auditory clicks delivered via headphones. Since their first description 10 years ago, VEMPs are now being used by investigators worldwide, and characteristic changes observed with aging and in a variety of peripheral and central vestibulopathies have been described. Additional methods of evoking VEMPs, which use air- and bone-conducted short-tone bursts, forehead taps, and short-duration transmastoid direct current (DC) stimulation, have been described, and these complement the original technique. Click-evoked VEMPs are attenuated or absent in a proportion of patients with vestibular neuritis, herpes zoster oticus, late Meniere disease, and vestibular schwannomas; their amplitudes are increased and thresholds are pathologically lowered in superior semicircular canal dehiscence presenting with the Tullio phenomenon. VEMPs evoked by clicks and DC are useful when monitoring the efficacy of intratympanic gentamicin therapy used for chemical vestibular ablation. Prolonged p13 and n23 peak latencies and decreased amplitudes have been observed in association with central vestibulopathy. VEMPs evoked by clicks are a robust, reproducible screening test of otolith function. DC stimulation enables differentiation of labyrinthine from retrolabyrinthine lesions; bone-conducted stimuli permit VEMP recording despite conductive hearing loss and deliver a relatively larger vestibular stimulus for a given level of auditory perception.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                26 August 2020
                2020
                : 11
                : 894
                Affiliations
                [1] 1Unit of Otoneurology, Lin Medical Center , Haifa, Israel
                [2] 2Rappaport Faculty of Medicine, Technion Israel Institute of Technology , Haifa, Israel
                [3] 3Faculty of Social Welfare and Health Sciences, University of Haifa , Haifa, Israel
                [4] 4Department of Otolaryngology Head and Neck Surgery, Galilee Medical Center , Nahariya, Israel
                Author notes

                Edited by: Marco Mandalà, Siena University Hospital, Italy

                Reviewed by: Nicolas Perez-Fernandez, University Clinic of Navarra, Spain; Andrea Castellucci, Santa Maria Nuova Hospital, Italy

                *Correspondence: Avi Shupak shupak@ 123456012.net.il

                This article was submitted to Neuro-Otology, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2020.00894
                7479309
                17f0385c-6d3b-4778-8334-23afd46075e2
                Copyright © 2020 Shupak, Falah and Kaminer.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 April 2020
                : 13 July 2020
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 47, Pages: 7, Words: 4940
                Categories
                Neurology
                Original Research

                Neurology
                cervical evoked myogenic potentials,vestibular nerve,vertigo,benign paroxysmal positional,saccule and utricle,semicircular canals,surveys and questionnaires,caloric tests

                Comments

                Comment on this article