17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Groundwater-dependent ecosystems: recent insights from satellite and field-based studies

      , , , ,
      Hydrology and Earth System Sciences
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> Groundwater-dependent ecosystems (GDEs) are at risk globally due to unsustainable levels of groundwater extraction, especially in arid and semi-arid regions. In this review, we examine recent developments in the ecohydrology of GDEs with a focus on three knowledge gaps: (1) how do we locate GDEs, (2) how much water is transpired from shallow aquifers by GDEs and (3) what are the responses of GDEs to excessive groundwater extraction? The answers to these questions will determine water allocations that are required to sustain functioning of GDEs and to guide regulations on groundwater extraction to avoid negative impacts on GDEs. <br><br> We discuss three methods for identifying GDEs: (1) techniques relying on remotely sensed information; (2) fluctuations in depth-to-groundwater that are associated with diurnal variations in transpiration; and (3) stable isotope analysis of water sources in the transpiration stream. <br><br> We then discuss several methods for estimating rates of GW use, including direct measurement using sapflux or eddy covariance technologies, estimation of a climate wetness index within a Budyko framework, spatial distribution of evapotranspiration (ET) using remote sensing, groundwater modelling and stable isotopes. Remote sensing methods often rely on direct measurements to calibrate the relationship between vegetation indices and ET. ET from GDEs is also determined using hydrologic models of varying complexity, from the White method to fully coupled, variable saturation models. Combinations of methods are typically employed to obtain clearer insight into the components of groundwater discharge in GDEs, such as the proportional importance of transpiration versus evaporation (e.g. using stable isotopes) or from groundwater versus rainwater sources. <br><br> Groundwater extraction can have severe consequences for the structure and function of GDEs. In the most extreme cases, phreatophytes experience crown dieback and death following groundwater drawdown. We provide a brief review of two case studies of the impacts of GW extraction and then provide an ecosystem-scale, multiple trait, integrated metric of the impact of differences in groundwater depth on the structure and function of eucalypt forests growing along a natural gradient in depth-to-groundwater. We conclude with a discussion of a depth-to-groundwater threshold in this mesic GDE. Beyond this threshold, significant changes occur in ecosystem structure and function.</p>

          Related collections

          Most cited references197

          • Record: found
          • Abstract: not found
          • Article: not found

          On the relation between NDVI, fractional vegetation cover, and leaf area index

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The gravity recovery and climate experiment: Mission overview and early results

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

                Bookmark

                Author and article information

                Journal
                Hydrology and Earth System Sciences
                Hydrol. Earth Syst. Sci.
                Copernicus GmbH
                1607-7938
                2015
                October 21 2015
                : 19
                : 10
                : 4229-4256
                Article
                10.5194/hess-19-4229-2015
                17f7c35f-c2c2-48a9-84fe-322d42ad9010
                © 2015

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article