12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of Nutraceuticals in Angiogenesis-Dependent Disorders

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The term of angiogenesis refers to the growth of new vessels from pre-existing capillaries. The phenomenon is necessary for physiological growth, repair and functioning of our organs. When occurring in a not regulated manner, it concurs to pathological conditions as tumors, eye diseases, chronic degenerative disorders. On the contrary insufficient neovascularization or endothelial disfunction accompanies ischemic and metabolic disorders. In both the cases an inflammatory and oxidative condition exists in supporting angiogenesis deregulation and endothelial dysfunction. The use of nutraceuticals with antioxidant and anti-inflammatory activities can be a therapeutic option to maintain an adequate vascularization and endothelial cell proper functioning or to blunt aberrant angiogenesis. A revision of the updated literature reports on nutraceuticals to guide endothelial cell wellness and to restore physiological tissue vascularization is the objective of this paper. The critical aspects as well as lacking data for human use will be explored from a pharmacological perspective.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Angiogenesis in life, disease and medicine.

          The growth of blood vessels (a process known as angiogenesis) is essential for organ growth and repair. An imbalance in this process contributes to numerous malignant, inflammatory, ischaemic, infectious and immune disorders. Recently, the first anti-angiogenic agents have been approved for the treatment of cancer and blindness. Angiogenesis research will probably change the face of medicine in the next decades, with more than 500 million people worldwide predicted to benefit from pro- or anti-angiogenesis treatments.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids.

              Both n-6 and n-3 polyunsaturated fatty acids (PUFA) are recognized as essential nutrients in the human diet, yet reliable data on population intakes are limited. The aim of the present study was to ascertain the dietary intakes and food sources of individual n-6 and n-3 PUFA in the Australian population. An existing database with fatty acid composition data on 1690 foods was updated with newly validated data on 150 foods to estimate the fatty acid content of foods recorded as eaten by 10,851 adults in the 1995 Australian National Nutrition Survey. Average daily intakes of linoleic (LA), arachidonic (AA), alpha-linolenic (LNA), eicosapentaenoic (EPA), docosapentaenoic (DPA), and docosahexaenoic (DHA) acids were 10.8, 0.052, 1.17, 0.056, 0.026, and 0.106 g, respectively, with long-chain (LC) n-3 PUFA (addition of EPA, DPA, and DHA) totaling 0.189 g; median intakes were considerably lower (9.0 g LA, 0.024 g AA, 0.95 g LNA, 0.008 g EPA, 0.006 g DPA, 0.015 g DHA, and 0.029 g LC n-3 PUFA). Fats and oils, meat and poultry, cereal-based products and cereals, vegetables, and nuts and seeds were important sources of n-6 PUFA, while cereal-based products, fats and oils, meat and poultry, cereals, milk products, and vegetable products were sources of LNA. As expected, seafood was the main source of LC n-3 PUFA, contributing 71%, while meat and eggs contributed 20 and 6%, respectively. The results indicate that the majority of Australians are failing to meet intake recommendations for LC n-3 PUFA (> 0.2 g per day) and emphasize the need for strategies to increase the availability and consumption of n-3-containing foods.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                18 October 2018
                October 2018
                : 23
                : 10
                : 2676
                Affiliations
                Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy; terzuoli8@ 123456unisi.it (E.T.); sandra.donnini@ 123456unisi.it (S.D.)
                Author notes
                [* ]Correspondence: lucia.morbidelli@ 123456unisi.it ; Tel.: +39-0577-235381
                Author information
                https://orcid.org/0000-0001-8148-7049
                https://orcid.org/0000-0001-9248-4505
                https://orcid.org/0000-0001-6617-1644
                Article
                molecules-23-02676
                10.3390/molecules23102676
                6222874
                30340320
                187591a8-4028-4e97-9806-7c8fa59bc9d0
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 September 2018
                : 16 October 2018
                Categories
                Review

                angiogenesis,nutraceutical,cancer,endothelial dysfunction,inflammation,oxidative stress

                Comments

                Comment on this article