1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoarthritis (OA) is the most common type of arthritis that occurs in an aged population. It affects any joints in the body and degenerates the articular cartilage and the subchondral bone. Despite the pathophysiology of OA being different, cartilage resorption is still a symbol of osteoarthritis. Matrix metalloproteinases (MMPs) are important proteolytic enzymes that degrade extra-cellular matrix proteins (ECM) in the body. MMPs contribute to the turnover of cartilage and its break down; their levels have increased in the joint tissues of OA patients. Application of chondroprotective drugs neutralize the activities of MMPs. Natural products derived from herbs and plants developed as traditional medicine have been paid attention to, due to their potential biological effects. The therapeutic value of natural products in OA has increased in reputation due to their clinical impact and insignificant side effects. Several MMPs inhibitor have been used as therapeutic drugs, for a long time. Recently, different types of compounds were reviewed for their biological activities. In this review, we summarize numerous natural products for the development of MMPs inhibitors in arthritic diseases and describe the major signaling targets that were involved for the treatments of these destructive joint diseases.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: found
          • Article: not found

          Function and activation of NF-kappa B in the immune system.

          NF-kappa B is a ubiquitous transcription factor. Nevertheless, its properties seem to be most extensively exploited in cells of the immune system. Among these properties are NF-kappa B's rapid posttranslational activation in response to many pathogenic signals, its direct participation in cytoplasmic/nuclear signaling, and its potency to activate transcription of a great variety of genes encoding immunologically relevant proteins. In vertebrates, five distinct DNA binding subunits are currently known which might extensively heterodimerize, thereby forming complexes with distinct transcriptional activity, DNA sequence specificity, and cell type- and cell stage-specific distribution. The activity of DNA binding NF-kappa B dimers is tightly controlled by accessory proteins called I kappa B subunits of which there are also five different species currently known in vertebrates. I kappa B proteins inhibit DNA binding and prevent nuclear uptake of NF-kappa B complexes. An exception is the Bcl-3 protein which in addition can function as a transcription activating subunit in th nucleus. Other I kappa B proteins are rather involved in terminating NF-kappa B's activity in the nucleus. The intracellular events that lead to the inactivation of I kappa B, i.e. the activation of NF-kappa B, are complex. They involve phosphorylation and proteolytic reactions and seem to be controlled by the cells' redox status. Interference with the activation or activity of NF-kappa B may be beneficial in suppressing toxic/septic shock, graft-vs-host reactions, acute inflammatory reactions, acute phase response, and radiation damage. The inhibition of NF-kappa B activation by antioxidants and specific protease inhibitors may provide a pharmacological basis for interfering with these acute processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteoarthritis.

            Osteoarthritis (OA) is characterized by degeneration of articular cartilage, limited intraarticular inflammation with synovitis, and changes in peri-articular and subchondral bone. Multiple factors are involved in the pathogenesis of OA, including mechanical influences, the effects of aging on cartilage matrix composition and structure, and genetic factors. Since the initial stages of OA involve increased cell proliferation and synthesis of matrix proteins, proteinases, growth factors, cytokines, and other inflammatory mediators by chondrocytes, research has focused on the chondrocyte as the cellular mediator of OA pathogenesis. The other cells and tissues of the joint, including the synovium and subchondral bone, also contribute to pathogenesis. The adult articular chondrocyte, which normally maintains the cartilage with a low turnover of matrix constituents, has limited capacity to regenerate the original cartilage matrix architecture. It may attempt to recapitulate phenotypes of early stages of cartilage development, but the precise zonal variations of the original cartilage cannot be replicated. Current pharmacological interventions that address chronic pain are insufficient, and no proven structure-modifying therapy is available. Cartilage tissue engineering with or without gene therapy is the subject of intense investigation. There are multiple animal models of OA, but there is no single model that faithfully replicates the human disease. This review will focus on questions currently under study that may lead to better understanding of mechanisms of OA pathogenesis and elucidation of effective strategies for therapy, with emphasis on mechanisms that affect the function of chondrocytes and interactions with surrounding tissues. 2007 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Structure, regulation and function of NF-kappa B.

                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                13 July 2020
                July 2020
                : 21
                : 14
                : 4931
                Affiliations
                [1 ]Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; tjaya_2002@ 123456yahoo.co.in
                [2 ]Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; bhavan@ 123456buc.edu.in
                [3 ]Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
                Author notes
                [* ]Correspondence: sheujr@ 123456tmu.edu.tw ; Tel.: +886-2-27361661-3199; Fax: +886-27390450
                Author information
                https://orcid.org/0000-0003-2056-4607
                https://orcid.org/0000-0001-8265-3678
                Article
                ijms-21-04931
                10.3390/ijms21144931
                7404046
                32668590
                189e2d33-0157-44fb-a5bf-f0016367e9bc
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 June 2020
                : 08 July 2020
                Categories
                Review

                Molecular biology
                arthritis,mmps,natural products,chondroprotection,signaling pathways
                Molecular biology
                arthritis, mmps, natural products, chondroprotection, signaling pathways

                Comments

                Comment on this article