13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media.

      Langmuir
      Ferric Compounds, chemistry, Gold, Hydrogen-Ion Concentration, Metal Nanoparticles, Models, Chemical, Osmolar Concentration, Polyethylene Glycols, Spectrophotometry, Ultraviolet

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanoparticles with monodisperse, spherical magnetic iron oxide cores and contiguous gold shells (Fe/Au NPs) have been synthesized in order to combine magnetophoretic responsiveness and localized surface plasmon resonance in a single nanoparticle. Such particles are sufficiently charged to be stable against flocculation in low ionic strength media, but they require surface modification to be stably dispersed in elevated ionic strength media that are appropriate for biotechnological applications. Dynamic light scattering and ultraviolet-visible spectrophotometry are used to monitor the colloidal stability of Fe/Au NPs in pH 7.4 phosphate buffered saline containing 154 mM NaCl (PBS). While uncoated particles flocculate immediately upon introduction to PBS, Fe/Au NPs with adsorbed layers of bovine serum albumin or the amphiphilic triblock copolymers Pluronic F127 and Pluronic F68 resist flocculation after more than 5 days in PBS. Adsorbed dextran allowed flocculation that was limited to the formation of small clusters, while poly(ethylene glycol) homopolymers ranging in molecular weight from 6000 to 100 000 were ineffective steric stabilizers. The effectiveness of adsorbed Pluronic copolymers as steric stabilizers was interpreted in terms of the measured adsorbed layer thickness and extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory predictions of interparticle interactions.

          Related collections

          Author and article information

          Comments

          Comment on this article