6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mitocellular communication: Shaping health and disease

      , ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Throughout the animal kingdom, mitochondria are the only organelles that retain their own genome and the transcription and translation machineries that are all essential for energy harvesting. Mitochondria have developed a complex communication network, allowing them to stay in tune with cellular needs and nuclear transcriptional programs and to alleviate mitochondrial dysfunction. Here, we review recent findings on the wide array of mechanisms that contribute to these mitocellular communication networks, spanning from well-studied messenger molecules to mitonuclear genetic interactions. Based on these observations and developments, we advocate a broad and inclusive view on mitocellular interactions, which can have profound impacts on physiological, pathological, and evolutionary processes.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          The integrated stress response.

          In response to diverse stress stimuli, eukaryotic cells activate a common adaptive pathway, termed the integrated stress response (ISR), to restore cellular homeostasis. The core event in this pathway is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by one of four members of the eIF2α kinase family, which leads to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, that together promote cellular recovery. The gene expression program activated by the ISR optimizes the cellular response to stress and is dependent on the cellular context, as well as on the nature and intensity of the stress stimuli. Although the ISR is primarily a pro-survival, homeostatic program, exposure to severe stress can drive signaling toward cell death. Here, we review current understanding of the ISR signaling and how it regulates cell fate under diverse types of stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new pathway for mitochondrial quality control: mitochondrial-derived vesicles.

            The last decade has been marked by tremendous progress in our understanding of the cell biology of mitochondria, with the identification of molecules and mechanisms that regulate their fusion, fission, motility, and the architectural transitions within the inner membrane. More importantly, the manipulation of these machineries in tissues has provided links between mitochondrial dynamics and physiology. Indeed, just as the proteins required for fusion and fission were identified, they were quickly linked to both rare and common human diseases. This highlighted the critical importance of this emerging field to medicine, with new hopes of finding drugable targets for numerous pathologies, from neurodegenerative diseases to inflammation and cancer. In the midst of these exciting new discoveries, an unexpected new aspect of mitochondrial cell biology has been uncovered; the generation of small vesicular carriers that transport mitochondrial proteins and lipids to other intracellular organelles. These mitochondrial-derived vesicles (MDVs) were first found to transport a mitochondrial outer membrane protein MAPL to a subpopulation of peroxisomes. However, other MDVs did not target peroxisomes and instead fused with the late endosome, or multivesicular body. The Parkinson's disease-associated proteins Vps35, Parkin, and PINK1 are involved in the biogenesis of a subset of these MDVs, linking this novel trafficking pathway to human disease. In this review, we outline what has been learned about the mechanisms and functional importance of MDV transport and speculate on the greater impact of these pathways in cellular physiology. © 2014 The Authors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Here, there, and everywhere: The importance of ER membrane contact sites

              BACKGROUND: The defining feature of eukaryotic cells is the presence of membranebound organelles of diverse kinds, each with specialized functions. Most organelles have multiple copies in cells. In contrast, each cell contains only one endoplasmic reticulum (ER). However, the ER consists of an elaborated network of membrane cisternae and tubules that extends throughout the cell and occupies a large fraction of the cytoplasmic volume. While compartmentalization of biochemical reactions and processes in these organelles has obvious advantages, it also poses challenges for their coordinated activity, requiring mechanisms for regulated inter-organelle communication. However, these have remained elusive and the quintessential textbook cartoon still pictures organelles in isolation, floating in a cytoplasmic sea. The last decade radically changed this view and membrane contact sites (MCSs) between different organelles were brought to the center stage as prime, highly regulated routes for inter-organelle communication essential for cell homeostasis. ADVANCES: The presence of organelle contacts was recognized long ago. However, the significance of these structures remained unclear. Recent advances in the resolution of microscopy and the development of unique fluorophores have dramatically advanced our ability to study inter-organelle MCSs. The 3D structure of ER MCSs with other organelles and the plasma membrane can be visualized at nanometer resolution by electron microscopy (EM). Multi-spectral live-cell fluorescence microscopy displays the behavior of MCSs over time and in response to stimuli. Together these data have revealed the general features of MCSs. For example, EM has revealed that MCSs are closely opposed and tethered, but not fused membranes; MCSs are spaced at 10-30nm; and ribosomes are excluded from the ER surface at these sites. Fluorescence microscopy demonstrates that organelles can remain attached to ER tubules as they traffic along microtubules. The combinations of these tools with classical molecular biology and biochemical tools have identified molecules implicated in several MCSs and elucidated their functions, including lipid and ion transport between organelles and organelles positioning and division. OUTLOOK: MCSs are central to normal cell physiology. Moreover, several MCSs proteins are linked to various diseases: Seipin, Protrudin, and Spastin to hereditary spastic paraplegia; VAPA and VAPB to amyotrophic lateral sclerosis; Dnm2 and Mfn2 to charcot marie tooth; Stim1 and Orai1 to tubular aggregate myopathy; and ACBD5 to retinal dystrophy. Whether defects in MCSs functions cause these diseases directly or indirectly remain to be explored. Recent progress has begun to identify some of the molecular machineries that regulate MCSs formation. Dissecting roles of these factors will strengthen our understanding of the integrative nature of MCSs. The advancement of diverse microscopy techniques will allow us to track multiple factors at MCSs simultaneously in real time and in high resolution, and this may help us gain a more detailed view of MCSs biology and their related physiological processes. Our textbook image of organelles has changed. Instead of isolated cellular compartments, the picture now emerging shows organelles as largely interdependent structures that can communicate through membrane contact sites (MCSs). MCSs are sites where opposing organelles are tethered but do not fuse. MCSs provide a hybrid location where the toolkits of two different organelles can work together to perform vital cellular functions, such as lipid and ion transfer, signaling, and organelle division. Here we concentrate on MCSs involving the endoplasmic reticulum (ER), an organelle forming an extensive network of cisternae and tubules. We will highlight how the dynamic ER network regulates a plethora of cellular processes through MCSs with various organelles and with the plasma membrane (PM). Fig. 0. Endoplasmic reticulum (ER) membrane contacts sites (MCSs) with other organelles and the plasma membrane (PM). The ER forms MCSs with mitochondria, Golgi, endosomes, peroxisomes, lipid droplets and the PM. These MCSs are closely opposed but not fused membranes containing various molecular machineries. Factors localized to these MCSs mediate essential cellular processes including lipid and ion exchange, organelle positioning and biogenesis.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                November 14 2019
                November 15 2019
                November 15 2019
                November 14 2019
                : 366
                : 6467
                : 827-832
                Article
                10.1126/science.aax3768
                31727828
                1976eda3-bffa-467d-bf6a-84dec5b28097
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article