21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access
      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxidative phosphorylation is a source of energy production by which many cells satisfy their energy requirements. Endogenous reactive oxygen species (ROS) are by-products of oxidative phosphorylation. ROS are formed due to the inefficiency of oxidative phosphorylation, and lead to oxidative stress that affects mitochondrial metabolism. Chronic oxidative stress contributes to the onset of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The immediate consequences of oxidative stress include lipid peroxidation, protein oxidation, and mitochondrial deoxyribonucleic acid (mtDNA) mutation, which induce neuronal cell death. Mitochondrial binding of amyloid-β (Aβ) protein has been identified as a contributing factor in AD. In PD and HD, respectively, α-synuclein (α-syn) and huntingtin (Htt) gene mutations have been reported to exacerbate the effects of oxidative stress. Similarly, abnormalities in mitochondrial dynamics and the respiratory chain occur in ALS due to dysregulation of mitochondrial complexes II and IV. However, oxidative stress-induced dysfunctions in neurodegenerative diseases can be mitigated by the antioxidant function of hydrogen sulfide (H 2S), which also acts through the potassium (K ATP/K +) ion channel and calcium (Ca 2+) ion channels to increase glutathione (GSH) levels. The pharmacological activity of H 2S is exerted by both inorganic and organic compounds. GSH, glutathione peroxidase (Gpx), and superoxide dismutase (SOD) neutralize H 2O 2-induced oxidative damage in mitochondria. The main purpose of this review is to discuss specific causes and effects of mitochondrial oxidative stress in neurodegenerative diseases, and how these are impacted by the antioxidant functions of H 2S to support the development of advancements in neurodegenerative disease treatment.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Superoxide dismutases: role in redox signaling, vascular function, and diseases.

          Excessive reactive oxygen species Revised abstract, especially superoxide anion (O₂•-), play important roles in the pathogenesis of many cardiovascular diseases, including hypertension and atherosclerosis. Superoxide dismutases (SODs) are the major antioxidant defense systems against (O₂•-), which consist of three isoforms of SOD in mammals: the cytoplasmic Cu/ZnSOD (SOD1), the mitochondrial MnSOD (SOD2), and the extracellular Cu/ZnSOD (SOD3), all of which require catalytic metal (Cu or Mn) for their activation. Recent evidence suggests that in each subcellular location, SODs catalyze the conversion of (O₂•-), H2O2, which may participate in cell signaling. In addition, SODs play a critical role in inhibiting oxidative inactivation of nitric oxide, thereby preventing peroxynitrite formation and endothelial and mitochondrial dysfunction. The importance of each SOD isoform is further illustrated by studies from the use of genetically altered mice and viral-mediated gene transfer. Given the essential role of SODs in cardiovascular disease, the concept of antioxidant therapies, that is, reinforcement of endogenous antioxidant defenses to more effectively protect against oxidative stress, is of substantial interest. However, the clinical evidence remains controversial. In this review, we will update the role of each SOD in vascular biologies, physiologies, and pathophysiologies such as atherosclerosis, hypertension, and angiogenesis. Because of the importance of metal cofactors in the activity of SODs, we will also discuss how each SOD obtains catalytic metal in the active sites. Finally, we will discuss the development of future SOD-dependent therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ROS-dependent signal transduction.

            Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrogen sulfide and cell signaling.

              Hydrogen sulfide (H₂S) is a gaseous mediator synthesized from cysteine by cystathionine γ lyase (CSE) and other naturally occurring enzymes. Pharmacological experiments using H₂S donors and genetic experiments using CSE knockout mice suggest important roles for this vasodilator gas in the regulation of blood vessel caliber, cardiac response to ischemia/reperfusion injury, and inflammation. That H₂S inhibits cytochrome c oxidase and reduces cell energy production has been known for many decades, but more recently, a number of additional pharmacological targets for this gas have been identified. H₂S activates K(ATP) and transient receptor potential (TRP) channels but usually inhibits big conductance Ca²(+)-sensitive K(+) (BK(Ca)) channels, T-type calcium channels, and M-type calcium channels. H₂S may inhibit or activate NF-κB nuclear translocation while affecting the activity of numerous kinases including p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt. These disparate effects may be secondary to the well-known reducing activity of H₂S and/or its ability to promote sulfhydration of protein cysteine moieties within the cell.
                Bookmark

                Author and article information

                Journal
                Int J Med Sci
                Int J Med Sci
                ijms
                International Journal of Medical Sciences
                Ivyspring International Publisher (Sydney )
                1449-1907
                2019
                20 September 2019
                : 16
                : 10
                : 1386-1396
                Affiliations
                [1 ]Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea.
                [2 ]Department of Medicine, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea.
                Author notes
                ✉ Corresponding author: Na Young Jeong, MD. Ph.D. Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea. E-mail: jnyjjy@ 123456dau.ac.kr

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijmsv16p1386
                10.7150/ijms.36516
                6818192
                31692944
                1976f16f-aa0a-40ee-9927-79c3b37aa348
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 8 May 2019
                : 23 July 2019
                Categories
                Review

                Medicine
                central nervous system,hydrogen sulphide,mitochondrial dysfunction,neurodegenerative diseases,oxidative stress

                Comments

                Comment on this article