6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection and Quantification Methods for Viable but Non-culturable (VBNC) Cells in Process Wash Water of Fresh-Cut Produce: Industrial Validation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The significance of viable but non-culturable (VBNC) cells in the food industry is not well known, mainly because of the lack of suitable detection methodologies to distinguish them from dead cells. The study aimed at the selection of the method to differentiate dead and VBNC cells of Listeria monocytogenes in process wash water (PWW) from the fruit and vegetable industry. Different methodologies were examined including (i) flow cytometry, (ii) viability quantitative polymerase chain reaction (v-qPCR) using an improved version of the propidium monoazide (PMAxx) dye as DNA amplificatory inhibitor, and (iii) v-qPCR combining ethidium monoazide (EMA) and PMAxx. The results showed that the flow cytometry, although previously recommended, was not a suitable methodology to differentiate between dead and VBNC cells in PWW, probably because of the complex composition of the water, causing interferences and leading to an overestimation of the dead cells. Based on results obtained, the v-qPCR combined with EMA and PMAxx was the most suitable technique for the detection and quantification of VBNC cells in PWW. Concentrations of 10 μM EMA and 75 μM PMAxx incubated at 40°C for 40 min followed by a 15-min light exposure inhibited most of the qPCR amplification from dead cells. For the first time, this methodology was validated in an industrial processing line for shredded lettuce washed with chlorine (10 mg/L). The analysis of PWW samples allowed the differentiation of dead and VBNC cells. Therefore, this method can be considered as a rapid and reliable one recommended for the detection of VBNC cells in complex water matrixes such as those of the food industry. However, the complete discrimination of dead and VBNC cells was not achieved, which led to a slight overestimation of the percentage of VBNC cells in PWW, mostly, due to the complex composition of this type of water. More studies are needed to determine the significance of VBNC cells in case of potential cross-contamination of fresh produce during washing.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Recent findings on the viable but nonculturable state in pathogenic bacteria.

          Many bacteria, including a variety of important human pathogens, are known to respond to various environmental stresses by entry into a novel physiological state, where the cells remain viable, but are no longer culturable on standard laboratory media. On resuscitation from this 'viable but nonculturable' (VBNC) state, the cells regain culturability and the renewed ability to cause infection. It is likely that the VBNC state is a survival strategy, although several interesting alternative explanations have been suggested. This review describes the VBNC state, the various chemical and physical factors known to induce cells into this state, the cellular traits and gene expression exhibited by VBNC cells, their antibiotic resistance, retention of virulence and ability to attach and persist in the environment, and factors that have been found to allow resuscitation of VBNC cells. Along with simple reversal of the inducing stresses, a variety of interesting chemical and biological factors have been shown to allow resuscitation, including extracellular resuscitation-promoting proteins, a novel quorum-sensing system (AI-3) and interactions with amoeba. Finally, the central role of catalase in the VBNC response of some bacteria, including its genetic regulation, is described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Listeria monocytogenes contamination of ready‐to‐eat foods and the risk for human health in the EU

            Abstract Food safety criteria for Listeria monocytogenes in ready‐to‐eat (RTE) foods have been applied from 2006 onwards (Commission Regulation (EC) 2073/2005). Still, human invasive listeriosis was reported to increase over the period 2009–2013 in the European Union and European Economic Area (EU/EEA). Time series analysis for the 2008–2015 period in the EU/EEA indicated an increasing trend of the monthly notified incidence rate of confirmed human invasive listeriosis of the over 75 age groups and female age group between 25 and 44 years old (probably related to pregnancies). A conceptual model was used to identify factors in the food chain as potential drivers for L. monocytogenes contamination of RTE foods and listeriosis. Factors were related to the host (i. population size of the elderly and/or susceptible people; ii. underlying condition rate), the food (iii. L. monocytogenes prevalence in RTE food at retail; iv. L. monocytogenes concentration in RTE food at retail; v. storage conditions after retail; vi. consumption), the national surveillance systems (vii. improved surveillance), and/or the bacterium (viii. virulence). Factors considered likely to be responsible for the increasing trend in cases are the increased population size of the elderly and susceptible population except for the 25–44 female age group. For the increased incidence rates and cases, the likely factor is the increased proportion of susceptible persons in the age groups over 45 years old for both genders. Quantitative modelling suggests that more than 90% of invasive listeriosis is caused by ingestion of RTE food containing > 2,000 colony forming units (CFU)/g, and that one‐third of cases are due to growth in the consumer phase. Awareness should be increased among stakeholders, especially in relation to susceptible risk groups. Innovative methodologies including whole genome sequencing (WGS) for strain identification and monitoring of trends are recommended.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques.

              This article elaborates on possible future directions for microbial viability assessment using nucleic acid-modifying compounds in combination with DNA- (and potentially RNA-) amplification technologies. Bacteria were traditionally considered viable when they could be cultured, whereas today's viability concept is based on the presence of some form of metabolic activity, responsiveness, RNA transcripts that tend to degrade rapidly after cell death, or of an intact membrane. The latter criterion was the focus of recent approaches to limit detection to intact cells using ethidium monoazide or propidium monoazide. Membrane integrity must, however, be considered as a very conservative criterion for microbial viability. The new concept presented here aims at limiting nucleic acid-based detection to cells with an active metabolism, which might be a more appropriate viability criterion. To selectively detect only cells with metabolic and respiratory activity (while excluding inactive dead cells from detection), we suggest the use of 'activity-labile compounds'. In addition to their potential usefulness for viability assessment, these new compounds could also be beneficial for selectively amplifying nucleic acids of cells that have metabolic activities of interest. This preferential detection of microorganisms with certain metabolic capabilities is referred to as 'molecular enrichment' in distinction to 'growth enrichment'.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                04 May 2020
                2020
                : 11
                : 673
                Affiliations
                [1] 1Research Group on Quality, Safety and Bioactivity of Plant Foods, The Centre of Edafology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC) , Murcia, Spain
                [2] 2Faculty of Biomedical and Health Sciences, Nutrition, Microbiota and Health Group, Universidad Europea de Madrid, Villaviciosa de Odón , Madrid, Spain
                Author notes

                Edited by: Nguyen Thi Thanh Hanh, Seoul National University, South Korea

                Reviewed by: Dimitris Tsaltas, Cyprus University of Technology, Cyprus; Xiaomei Su, Zhejiang Normal University, China

                *Correspondence: Pilar Truchado, ptruchado@ 123456cebas.csic.es

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.00673
                7214806
                32431672
                199cb9af-9b4a-46d9-9c6d-641329f41981
                Copyright © 2020 Truchado, Gil, Larrosa and Allende.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 January 2020
                : 24 March 2020
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 38, Pages: 10, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                flow cytometry,quantitative pcr,microbial inactivation,food safety,listeria monocytogenes

                Comments

                Comment on this article