5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in the coastal environment of Korea: Occurrence, spatial distribution, and bioaccumulation potential

      , , ,
      Chemosphere
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins

          The primary aim of this article is to provide an overview of perfluoroalkyl and polyfluoroalkyl substances (PFASs) detected in the environment, wildlife, and humans, and recommend clear, specific, and descriptive terminology, names, and acronyms for PFASs. The overarching objective is to unify and harmonize communication on PFASs by offering terminology for use by the global scientific, regulatory, and industrial communities. A particular emphasis is placed on long-chain perfluoroalkyl acids, substances related to the long-chain perfluoroalkyl acids, and substances intended as alternatives to the use of the long-chain perfluoroalkyl acids or their precursors. First, we define PFASs, classify them into various families, and recommend a pragmatic set of common names and acronyms for both the families and their individual members. Terminology related to fluorinated polymers is an important aspect of our classification. Second, we provide a brief description of the 2 main production processes, electrochemical fluorination and telomerization, used for introducing perfluoroalkyl moieties into organic compounds, and we specify the types of byproducts (isomers and homologues) likely to arise in these processes. Third, we show how the principal families of PFASs are interrelated as industrial, environmental, or metabolic precursors or transformation products of one another. We pay particular attention to those PFASs that have the potential to be converted, by abiotic or biotic environmental processes or by human metabolism, into long-chain perfluoroalkyl carboxylic or sulfonic acids, which are currently the focus of regulatory action. The Supplemental Data lists 42 families and subfamilies of PFASs and 268 selected individual compounds, providing recommended names and acronyms, and structural formulas, as well as Chemical Abstracts Service registry numbers. Integr Environ Assess Manag 2011;7:513–541. © 2011 SETAC
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)?

            More than 3000 per- and polyfluoroalkyl substances (PFASs) are, or have been, on the global market, yet most research and regulation continues to focus on a limited selection of rather well-known long-chain PFASs, particularly perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and their precursors. Continuing to overlook the vast majority of other PFASs is a major concern for society. We provide recommendations for how to proceed with research and cooperation to tackle the vast number of PFASs on the market and in the environment.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Global Distribution of Perfluorooctane Sulfonate in Wildlife

                Bookmark

                Author and article information

                Journal
                Chemosphere
                Chemosphere
                Elsevier BV
                00456535
                July 2020
                July 2020
                : 251
                : 126633
                Article
                10.1016/j.chemosphere.2020.126633
                32443228
                19cb701b-76ca-4a7d-af73-872cdca0380c
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article