+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Intervention with Tranilast Attenuates Renal Pathology and Albuminuria in Advanced Experimental Diabetic Nephropathy

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background/Aims: Tubulointerstitial pathology with the accumulation of extracellular matrix are pathological hallmarks of diabetic nephropathy that are directly related to declining renal function. Tranilast (N-[3,4-dimethoxycinnamoyl]anthranilic acid), an inhibitor of transforming growth factor-β (TGF-β), used to treat hypertrophic scars has recently been shown in pilot studies to exert a beneficial effect in advanced diabetic nephropathy in humans. However, its effects on diabetic renal pathology are unknown. Methods: Studies were conducted using a transgenic model, the diabetic (mRen-2)27 rat, which develops many of the structural and functional characteristics of human diabetic nephropathy when diabetes is induced with streptozotocin (STZ). An experimental design was chosen to mimic, in part, the clinical context with drug therapy (tranilast 400 mg/kg/ day) initiated in established disease (8 weeks after STZ) and in the presence of persistent hyperglycaemia and hypertension. Results: At 16 weeks, diabetes was associated with progressive albuminuria, tubulointerstitial fibrosis and tubular atrophy. Without affecting blood pressure or blood glucose, tranilast treatment was associated with a 83% reduction in tubulointerstitial fibrosis (p < 0.001), a 58% reduction in tubular atrophy (p < 0.01) and near normalization of albuminuria (p < 0.05) in diabetic Ren-2 rats. In vitro studies in primary cultures of human renal cortical fibroblasts demonstrated a reduction in TGF-β-induced hydroxyproline incorporation and fibronectin synthesis with tranilast 100 µ M. Conclusion: Tranilast, when administered during the course of experimental diabetic nephropathy, attenuates tubulointerstitial pathology and albuminuria. These findings are consistent with the antagonist effects of tranilast on TGF-β actions in the diabetic kidney.

          Related collections

          Most cited references 11

          • Record: found
          • Abstract: not found
          • Article: not found

          Transforming growth factor beta in tissue fibrosis.

            • Record: found
            • Abstract: not found
            • Article: not found

            Pathophysiology of progressive nephropathies.

             T Bertani,  G. Remuzzi (1998)
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice.

              Emerging evidence suggests that transforming growth factor-beta (TGF-beta) is an important mediator of diabetic nephropathy. We showed previously that short-term treatment with a neutralizing monoclonal anti-TGF-beta antibody (alphaT) in streptozotocin-diabetic mice prevents early changes of renal hypertrophy and increased matrix mRNA. To establish that overactivity of the renal TGF-beta system mediates the functional and structural changes of the more advanced stages of nephropathy, we tested whether chronic administration of alphaT prevents renal insufficiency and glomerulosclerosis in the db/db mouse, a model of type 2 diabetes that develops overt nephropathy. Diabetic db/db mice and nondiabetic db/m littermates were treated intraperitoneally with alphaT or control IgG, 300 microgram three times per week for 8 wk. Treatment with alphaT, but not with IgG, significantly decreased the plasma TGF-beta1 concentration without decreasing the plasma glucose concentration. The IgG-treated db/db mice developed albuminuria, renal insufficiency, and glomerular mesangial matrix expansion associated with increased renal mRNAs encoding alpha1(IV) collagen and fibronectin. On the other hand, treatment with alphaT completely prevented the increase in plasma creatinine concentration, the decrease in urinary creatinine clearance, and the expansion of mesangial matrix in db/db mice. The increase in renal matrix mRNAs was substantially attenuated, but the excretion of urinary albumin factored for creatinine clearance was not significantly affected by alphaT treatment. We conclude that chronic inhibition of the biologic actions of TGF-beta with a neutralizing monoclonal antibody in db/db mice prevents the glomerulosclerosis and renal insufficiency resulting from type 2 diabetes.

                Author and article information

                Nephron Physiol
                Nephron Physiology
                S. Karger AG
                December 2003
                30 December 2003
                : 95
                : 4
                : p83-p91
                Departments of aPhysiology and bMedicine, University of Melbourne and St. Vincent’s Hospital, Melbourne, Vic., and cDepartment of Medicine, University of Sydney and Royal North Shore Hospital, Sydney, NSW, Australia
                74845 Nephron Physiol 2003;95:p83–p91
                © 2003 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 8, Tables: 2, References: 33, Pages: 1
                Self URI (application/pdf):
                Original Paper


                Comment on this article