21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current State of Nanoemulsions in Drug Delivery

      ,
      Journal of Biomaterials and Nanobiotechnology
      Scientific Research Publishing, Inc.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties.

          This work describes a novel carrier for enhanced skin delivery, the ethosomal system, which is composed of phospholipid, ethanol and water. Ethosomal systems were much more efficient at delivering a fluorescent probe to the skin in terms of quantity and depth, than either liposomes or hydroalcoholic solution. The ethosomal system dramatically enhanced the skin permeation of minoxidil in vitro compared with either ethanolic or hydroethanolic solution or phospholipid ethanolic micellar solution of minoxidil. In addition, the transdermal delivery of testosterone from an ethosomal patch was greater both in vitro and in vivo than from commercially available patches. Skin permeation of ethosomal components, ethanol and phospholipid, was demonstrated in diffusion-cell experiments. Ethosomal systems composed of soy phosphatidylcholine 2%, ethanol 30% and water were shown by electron microscopy to contain multilamellar vesicles. 31P-NMR studies confirmed the bilayer configuration of the lipids. Calorimetry and fluorescence measurements suggested that the vesicular bilayers are flexible, having a relatively low T(m) and fluorescence anisotropy compared with liposomes obtained in the absence of ethanol. Dynamic light scattering measurements indicated that ethanol imparted a negative charge to the vesicles. The average vesicle size, as measured by dynamic light scattering, was modulated by altering the ethosome composition. Experiments using fluorescent probes and ultracentrifugation showed that the ethosomes had a high entrapment capacity for molecules of various lyophilicities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Formation and stability of nano-emulsions.

            This review describes the principles of formation and stability of nano-emulsions. It starts with an introduction highlighting the main advantages of nano-emulsions over macroemulsions for personal care and cosmetic formulations. It also describes the main problems with lack of progress on nano-emulsions. The second section deals with the mechanism of emulsification and the dynamic light scattering technique for measurement of the droplet size of nano-emulsions. This is followed by a section on methods of emulsification and the role of surfactants. Three methods are described for nano-emulsion preparation, namely high energy emulsification (using homogenisers), low energy emulsification whereby water is added to an oil solution of the surfactant and the principle of the phase inversion temperature (PIT). A section is devoted to steric stabilisation and the role of the adsorbed layer thickness. The problem of Ostwald ripening (which is the main instability process of nano-emulsions) is described in some detail. The methods that can be applied to reduce Ostwald ripening are briefly described. This involves the addition of a second less soluble oil phase such as squalene and/or addition of a strongly adsorbed and water insoluble polymeric surfactant. The last part of the review gives some examples of nano-emulsions that are prepared by the PIT method as well as using high pressure homogeniser. A comparison of the two methods is given and the rate of Ostwald ripening is measured in both cases. The effect of changing the alkyl chain length and branching of the oil was investigated using decane, dodecane, tertadecane, hexadecane and isohexadecane. The branched oil isohexadcecane showed higher Ostwald ripening rate when compared with a linear chain oil with the same carbon number.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size

                Bookmark

                Author and article information

                Journal
                Journal of Biomaterials and Nanobiotechnology
                JBNB
                Scientific Research Publishing, Inc.
                2158-7027
                2158-7043
                2011
                2011
                : 02
                : 05
                : 626-639
                Article
                10.4236/jbnb.2011.225075
                1a526924-cf75-49c1-8eb0-3089accc24c1
                © 2011

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article