15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adapting Footfall Rhythmicity to Auditory Perturbations Affects Resilience of Locomotor Behavior: A Proof-of-Concept Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For humans, the ability to effectively adapt footfall rhythm to perturbations is critical for stable locomotion. However, only limited information exists regarding how dynamic stability changes when individuals modify their footfall rhythm. In this study, we recorded 3D kinematic activity from 20 participants (13 males, 18–30 years old) during walking on a treadmill while synchronizing with an auditory metronome sequence individualized to their baseline walking characteristics. The sequence then included unexpected temporal perturbations in the beat intervals with the subjects required to adapt their footfall rhythm accordingly. Building on a novel approach to quantify resilience of locomotor behavior, this study found that, in response to auditory perturbation, the mean center of mass (COM) recovery time across all participants who showed deviation from steady state ( N = 15) was 7.4 (8.9) s. Importantly, recovery of footfall synchronization with the metronome beats after perturbation was achieved prior (+3.4 [95.0% CI +0.1, +9.5] s) to the recovery of COM kinematics. These results highlight the scale of temporal adaptation to perturbations and provide implications for understanding regulation of rhythm and balance. Thus, our study extends the sensorimotor synchronization paradigm to include analysis of COM recovery time toward improving our understanding of an individual’s resilience to perturbations and potentially also their fall risk.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Moving beyond P values: data analysis with estimation graphics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sensorimotor synchronization: a review of recent research (2006-2012).

            Sensorimotor synchronization (SMS) is the coordination of rhythmic movement with an external rhythm, ranging from finger tapping in time with a metronome to musical ensemble performance. An earlier review (Repp, 2005) covered tapping studies; two additional reviews (Repp, 2006a, b) focused on music performance and on rate limits of SMS, respectively. The present article supplements and extends these earlier reviews by surveying more recent research in what appears to be a burgeoning field. The article comprises four parts, dealing with (1) conventional tapping studies, (2) other forms of moving in synchrony with external rhythms (including dance and nonhuman animals' synchronization abilities), (3) interpersonal synchronization (including musical ensemble performance), and (4) the neuroscience of SMS. It is evident that much new knowledge about SMS has been acquired in the last 7 years.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The condition for dynamic stability.

              The well-known condition for standing stability in static situations is that the vertical projection of the centre of mass (CoM) should be within the base of support (BoS). On the basis of a simple inverted pendulum model, an extension of this rule is proposed for dynamical situations: the position of (the vertical projection of) the CoM plus its velocity times a factor (square root l/g) should be within the BoS, l being leg length and g the acceleration of gravity. It is proposed to name this vector quantity 'extrapolated centre of mass position' (XcoM). The definition suggests as a measure of stability the 'margin of stability' b, the minimum distance from XcoM to the boundaries of the BoS. An alternative measure is the temporal stability margin tau, the time in which the boundary of the BoS would be reached without intervention. Some experimental data of subjects standing on one or two feet, flatfoot and tiptoe, are presented to give an idea of the usual ranges of these margins of stability. Example data on walking are also presented.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                29 July 2021
                2021
                : 15
                : 678965
                Affiliations
                Institute for Biomechanics, Department of Health Sciences and Technology , ETH Zürich, Switzerland
                Author notes

                Edited by: Charles-Etienne Benoit, University of Economics and Human Sciences in Warsaw, Poland

                Reviewed by: Peter Cariani, Harvard Medical School, United States; Mark T. Elliott, University of Warwick, United Kingdom

                *Correspondence: William R. Taylor, bt@ 123456ethz.ch

                This article was submitted to Auditory Cognitive Neuroscience, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2021.678965
                8358836
                34393705
                1a7872aa-4db5-460d-8e8d-a4654a6d78db
                Copyright © 2021 Ravi, Heimhofer, Taylor and Singh.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 March 2021
                : 15 June 2021
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 64, Pages: 12, Words: 0
                Funding
                Funded by: Staatssekretariat für Bildung, Forschung und Innovation 10.13039/501100007352
                Categories
                Neuroscience
                Original Research

                Neurosciences
                time perception,motor control,fall risk,sensorimotor synchronization,sensory cues,recovery potential,movement timing,rhythm perturbations

                Comments

                Comment on this article