13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Evolution Of Carbon, Sulphur, and Titanium Isotopes from High-Redshift to the Local Universe

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent observations of carbon, sulphur, and titanium isotopes at redshifts z~1 and in the local stellar disc and halo have opened a new window into the study of isotopic abundance patterns and the origin of the chemical elements. Using our Galactic chemical evolution code GEtool, we have examined the evolution of these isotopes within the framework of a Milky Way-like system. We have three aims in this work: first, to test the claim that novae are required, in order to explain the carbon isotope patterns in the Milky Way; second, to test the claim that sulphur isotope patterns at high-redshift require an initial mass function biased towards massive stars; and third, to test extant chemical evolution models against new observations of titanium isotopes that suggest an anti-correlation between trace-to-dominant isotopes with metallicity. Based upon our dual-infall galactic chemical evolution modelling of a Milky Way-like system, and the subsequent comparison with these new and unique datasets, we conclude the following: novae are not required to understand the evolution of 12C/13C in the solar neighbourhood; a massive star-biased initial mass function is consistent with the low ratios of 12C/13C and 32S/34S seen in one high-redshift late-type spiral, but the consequent super-solar metallicity prediction for the interstellar medium in this system seems highly unlikely; and deficient isotopes of titanium are predicted to correlate positively with metallicity, in apparent disagreement with the new datasets; if confirmed, classical chemical evolution models of the Milky Way (and the associated supernovae nucleosynthetic yields) may need a substantial overhaul to be made consistent.

          Related collections

          Author and article information

          Journal
          22 August 2008
          2008-08-26
          Article
          10.1111/j.1365-2966.2008.13870.x
          0808.3111
          1aa64395-5f94-4b82-bc8a-660e021a68d1

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          11 pages, 9 figures. Minor changes to match the accepted version
          astro-ph

          Comments

          Comment on this article