8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development of a respiratory burst assay using zebrafish kidneys and embryos.

      Journal of Immunological Methods
      Animals, Embryo, Nonmammalian, immunology, metabolism, Fluoresceins, Indoles, pharmacology, Kidney, Maleimides, Neutral Red, Phagocytes, Protein Kinase C, antagonists & inhibitors, Reactive Oxygen Species, Respiratory Burst, Zebrafish, embryology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The innate immune response constitutes the first line of defense against invading pathogens and consists of a variety of immune defense mechanisms including the respiratory burst of phagocytes. Respiratory burst can be used as a reliable measure of the immune response of a host, and numerous assays have been developed to measure this response in a variety of mammal and fish species. Phagocytes, like granulocytes and macrophages, that are derived from different tissues, or grown in cell culture, have been employed in a range of assay formats employing a variety of detection methods. The small size of the zebrafish has prevented the large-scale extraction of these cells for respiratory burst assays in the zebrafish. In this work, we describe a respiratory burst assay developed for the zebrafish using intact kidneys and embryos as sources of phagocytes. Phorbol myristate acetate (PMA)-inducible reactive oxygen species (ROS) were detected following the oxidation of a non-fluorescent dye 2',7'-dihydrodichlorofluorescein diacetate (H2DCFDA) to dichlorofluorescein (DCF), a fluorescent product. Embryos from 1 day post-fertilization until 5 days post-fertilization (dpf) were employed in this assay. Abrogation of H2DCFDA oxidation by the protein kinase C (PKC) inhibitor bisindolylmaleimide I (BisI) indicated a reduction in the respiratory burst. Fluorescence from the PMA-induced respiratory burst in kidneys and embryos was significantly elevated above DMSO-treated controls, while preincubation with BisI inhibited the increase in fluorescence. Colocalization of cell-associated chloromethyl-dihydrodichlorofluorescein diacetate (CM-H2DCFDA) with the phagocyte-selective dye neutral red is consistent with the observation that macrophages and granulocytes are the ROS-producing cells in the zebrafish.

          Related collections

          Author and article information

          Comments

          Comment on this article