75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The “Auto-Dissemination” Approach: A Novel Concept to Fight Aedes albopictus in Urban Areas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The main constraint to the fight against container-breeding mosquito vectors of human arboviruses is the difficulty in targeting the multiplicity of larval sources, mostly represented by small man-made water containers. The aim of this work is to assess the feasibility of the “auto-dissemination” approach, already tested for Aedes aegypti, as a possible alternative to traditional, inefficient control tools, against Ae. albopictus in urban areas. The approach is based on the possibility that wild adult females, exposed to artificial resting sites contaminated with pyriproxyfen, can disseminate this juvenile hormone analogue to larval habitats, thus interfering with adult emergence.

          Methodology

          We carried out four field experiments in two areas of Rome that are typically highly infested with Ae. albopictus, i.e. the main cemetery and a small green area within a highly urbanised neighbourhood. In each area we used 10 pyriproxyfen “dissemination” stations, 10 “sentinel” sites and 10 covered, control sites. The sentinel and control sites each contained 25 Ae. albopictus larvae. These were monitored for development and adult emergence.

          Principal Findings

          When a 5% pyriproxyfen powder was used to contaminate the dissemination sites, we observed significantly higher mortality at the pupal stage in the sentinel sites (50–70%) than in the controls (<2%), showing that pyriproxyfen was transferred by mosquitoes into sentinel sites and that it had a lethal effect.

          Conclusions

          The results support the potential feasibility of the auto-dissemination approach to control Ae. albopictus in urban areas. Further studies will be carried out to optimize the method and provide an effective tool to reduce the biting nuisance caused by this aggressive species and the transmission risk of diseases such as Dengue and Chikungunya. These arboviruses pose an increasing threat in Europe as Ae. albopictus expands its range.

          Author Summary

          Aedes albopictus (the Asian Tiger mosquito) is one of the most invasive and aggressive disease vectors in the world. It is a serious public nuisance and a public health risk, due to its ability to transmit pathogens to humans. The control of this mosquito is complicated by the difficulty in targeting either juveniles (due to their ability to colonise myriad and often cryptic domestic and natural water containers) or adults (due to their diurnal and outdoor resting and biting patterns). The aim of our work was to assess the feasibility of a novel approach to control Ae. albopictus in urban areas. This was based on the possibility that wild adult females, exposed to artificial resting sites contaminated with an insect growth regulator, could subsequently contaminate their breeding sites and kill both the larvae and pupae developing therein. The results obtained from field experiments carried out in highly infested areas in Rome demonstrate that this approach has potential as a valid alternative to traditional (and ineffective) larval control efforts in urban areas. We therefore introduce a new perspective in the fight against the Asian Tiger Mosquito.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of Aedes albopictus.

          W A Hawley (1988)
          The biology of Aedes albopictus is reviewed, with emphasis on studies of ecology and behavior. The following topics are discussed: distribution and taxonomy, genetics, medical importance, habitat, egg biology, larval biology, adult biology, competitive interactions, comparative studies with Aedes aegypti, population dynamics, photoperiodism, and surveillance and control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark-release-recapture experiments.

            We report the results of three mark-release-recapture experiments carried out in an urban area in Rome, Italy, to study the active dispersal of Aedes albopictus (Diptera: Culicidae). The 4.3% recapture rate obtained supports the use of sticky traps in MRR experiments to study the dispersal of Ae. albopictus females. Most fluorescent dust-marked females were recaptured at the gravid stage at 50-200 m from the release sites during the first 9 days after release. The average of daily-MDTs (Mean Distance Traveled) was 119 m and the maximum observed distance travelled ranged from 199 m to 290 m in the three replicates. These data provide the first information about the dispersal of Ae. albopictus in a temperate European area and appear to be consistent with the few data available on this subject from other urban areas, where dispersal was constrained by physical barriers. Although caution should be taken in generalizing these results, they should be considered when planning control activities in urban areas in Italy, as well as in other European countries. This is particularly relevant if control is intended to interrupt pathogen transmission in cases of possible arbovirus epidemics, such as the Chikungunya outbreak that occurred in Ravenna, Italy in 2007. © 2010 The Authors. Medical and Veterinary Entomology © 2010 The Royal Entomological Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in urban and rural contexts within Rome province, Italy.

              Knowledge of the frequency of contact between a mosquito species and its different hosts is essential to understand the role of each vector species in the transmission of diseases to humans and/or animals. However, no data are so far available on the feeding habits of Aedes albopictus in Italy or in other recently colonized temperate regions of Europe, due to difficulties in collecting blood-fed females of this diurnal and exophilic species. We analyzed Ae. albopictus host-feeding patterns in two urban and two rural sites within the area of Rome (Italy). Ae. albopictus was collected using sticky-traps and the blood-meal origin of 303 females was determined by direct dot-ELISA. The blood-fed sample, although representing only 4% of the total Ae. albopictus collected, demonstrates the useful application of sticky-trap in studying the feeding behavior of the species. The human blood index was significantly different among sites, ranging from 79-96% in urban sites to 23-55% in rural sites, where horses and bovines represented the most bitten hosts. The results obtained confirm the plastic feeding behavior shown by Ae. albopictus in its original range of distribution and highlights the high potential of this species as a vector of human pathogens in urban areas of Italy, where both humans and the mosquito itself may reach very high densities.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                August 2012
                28 August 2012
                : 6
                : 8
                : e1793
                Affiliations
                [1 ]Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma “Sapienza”, Rome, Italy
                [2 ]Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
                [3 ]Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Università di Roma “Sapienza”, Rome, Italy
                [4 ]I.N.D.I.A. INDUSTRIE CHIMICHE S.p.A, Padua, Italy
                [5 ]Cairns Public Health Unit, Tropical Regional Services, Queensland Health, Cairns, Australia
                Liverpool School of Tropical Medicine, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BC AdT. Performed the experiments: BC AI MP. Analyzed the data: BC DC. Contributed reagents/materials/analysis tools: AB. Wrote the paper: AdT BC GJD VP.

                Article
                PNTD-D-12-00348
                10.1371/journal.pntd.0001793
                3429402
                22953015
                1ad752c1-32c4-4398-836a-ec7a0e9f5c44
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 March 2012
                : 11 July 2012
                Page count
                Pages: 8
                Funding
                This study was funded by EU grant GOCE-2003-010284 EDENext and is catalogued by EDENext Steering Committee as EDENext 035. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Ecology
                Medicine
                Infectious Diseases
                Public Health

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article