21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Secondary Motor Cortex: Where ‘Sensory’ Meets ‘Motor’ in the Rodent Frontal Cortex

      ,
      Trends in Neurosciences
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P2">In rodents, the medial aspect of the secondary motor cortex (M2) is known by other names including medial agranular cortex, precentral cortex, and frontal orienting field. As a subdivision of the medial prefrontal cortex, M2 can be defined by a distinct set of afferent and efferent connections, microstimulation responses, and lesion outcomes. However, the behavioral role of M2 remains mysterious. Here, we focus on evidence from rodent studies, highlighting recent findings of early and context-dependent choice-related activity in M2 during voluntary behavior. Based on the current understanding, we suggest that a major function for M2 is to flexibly map such antecedent signals as sensory cues to motor actions, thereby enabling adaptive choice behavior. </p>

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          A mesoscale connectome of the mouse brain.

          Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural networks of the mouse neocortex.

            Numerous studies have examined the neuronal inputs and outputs of many areas within the mammalian cerebral cortex, but how these areas are organized into neural networks that communicate across the entire cortex is unclear. Over 600 labeled neuronal pathways acquired from tracer injections placed across the entire mouse neocortex enabled us to generate a cortical connectivity atlas. A total of 240 intracortical connections were manually reconstructed within a common neuroanatomic framework, forming a cortico-cortical connectivity map that facilitates comparison of connections from different cortical targets. Connectivity matrices were generated to provide an overview of all intracortical connections and subnetwork clusterings. The connectivity matrices and cortical map revealed that the entire cortex is organized into four somatic sensorimotor, two medial, and two lateral subnetworks that display unique topologies and can interact through select cortical areas. Together, these data provide a resource that can be used to further investigate cortical networks and their corresponding functions. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing.

              Top-down modulation of sensory processing allows the animal to select inputs most relevant to current tasks. We found that the cingulate (Cg) region of the mouse frontal cortex powerfully influences sensory processing in the primary visual cortex (V1) through long-range projections that activate local γ-aminobutyric acid-ergic (GABAergic) circuits. Optogenetic activation of Cg neurons enhanced V1 neuron responses and improved visual discrimination. Focal activation of Cg axons in V1 caused a response increase at the activation site but a decrease at nearby locations (center-surround modulation). Whereas somatostatin-positive GABAergic interneurons contributed preferentially to surround suppression, vasoactive intestinal peptide-positive interneurons were crucial for center facilitation. Long-range corticocortical projections thus act through local microcircuits to exert spatially specific top-down modulation of sensory processing. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Journal
                Trends in Neurosciences
                Trends in Neurosciences
                Elsevier BV
                01662236
                March 2017
                March 2017
                : 40
                : 3
                : 181-193
                Article
                10.1016/j.tins.2016.11.006
                5339050
                28012708
                1add3be0-06b1-47fa-ae60-54584c0944f9
                © 2017
                History

                Comments

                Comment on this article