6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acoustically modulated biomechanical stimulation for human cartilage tissue engineering

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The biomechanical environment in an acoustofluidic bioreactor is modified by controlling the acoustic driving conditions to promote human cartilage generation.

          Abstract

          Bioacoustofluidics can be used to trap and levitate cells within a fluid channel, thereby facilitating scaffold-free tissue engineering in a 3D environment. In the present study, we have designed and characterised an acoustofluidic bioreactor platform, which applies acoustic forces to mechanically stimulate aggregates of human articular chondrocytes in long-term levitated culture. By varying the acoustic parameters (amplitude, frequency sweep, and sweep repetition rate), cells were stimulated by oscillatory fluid shear stresses, which were dynamically modulated at different sweep repetition rates (1–50 Hz). Furthermore, in combination with appropriate biochemical cues, the acoustic stimulation was tuned to engineer human cartilage constructs with structural and mechanical properties comparable to those of native human cartilage, as assessed by immunohistology and nano-indentation, respectively. The findings of this study demonstrate the capability of acoustofluidics to provide a tuneable biomechanical force for the culture and development of hyaline-like human cartilage constructs in vitro.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Microscale technologies for tissue engineering and biology.

          Microscale technologies are emerging as powerful tools for tissue engineering and biological studies. In this review, we present an overview of these technologies in various tissue engineering applications, such as for fabricating 3D microfabricated scaffolds, as templates for cell aggregate formation, or for fabricating materials in a spatially regulated manner. In addition, we give examples of the use of microscale technologies for controlling the cellular microenvironment in vitro and for performing high-throughput assays. The use of microfluidics, surface patterning, and patterned cocultures in regulating various aspects of cellular microenvironment is discussed, as well as the application of these technologies in directing cell fate and elucidating the underlying biology. Throughout this review, we will use specific examples where available and will provide trends and future directions in the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves

            In single-cell analysis, cellular activity and parameters are assayed on an individual, rather than population-average basis. Essential to observing the activity of these cells over time is the ability to trap, pattern and retain them, for which previous single-cell-patterning work has principally made use of mechanical methods. While successful as a long-term cell-patterning strategy, these devices remain essentially single use. Here we introduce a new method for the patterning of multiple spatially separated single particles and cells using high-frequency acoustic fields with one cell per acoustic well. We characterize and demonstrate patterning for both a range of particle sizes and the capture and patterning of cells, including human lymphocytes and red blood cells infected by the malarial parasite Plasmodium falciparum. This ability is made possible by a hitherto unexplored regime where the acoustic wavelength is on the same order as the cell dimensions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-dimensional manipulation of single cells using surface acoustic waves

              The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.
                Bookmark

                Author and article information

                Journal
                LCAHAM
                Lab on a Chip
                Lab Chip
                Royal Society of Chemistry (RSC)
                1473-0197
                1473-0189
                2018
                2018
                : 18
                : 3
                : 473-485
                Affiliations
                [1 ]Mechanical Engineering
                [2 ]Faculty of Engineering and the Environment
                [3 ]University of Southampton
                [4 ]Southampton SO17 1 BJ
                [5 ]UK
                [6 ]Centre for Human Development
                [7 ]Stem Cells and Regeneration
                [8 ]Institute of Developmental Sciences
                [9 ]Faculty of Medicine
                Article
                10.1039/C7LC01195D
                1afa5060-0689-4a73-9cd6-57e219f5bc15
                © 2018

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article