9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mutation screening of the EXT1 and EXT2 genes in patients with hereditary multiple exostoses.

      American Journal of Human Genetics
      Electrophoresis, Polyacrylamide Gel, methods, England, Exostoses, Multiple Hereditary, genetics, Female, Genes, Tumor Suppressor, Humans, Male, Mutation, N-Acetylglucosaminyltransferases, Pedigree, Polymerase Chain Reaction, Proteins

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hereditary multiple exostoses (HME), the most frequent of all skeletal dysplasias, is an autosomal dominant disorder characterized by the presence of multiple exostoses localized mainly at the end of long bones. HME is genetically heterogeneous, with at least three loci, on 8q24.1 (EXT1), 11p11-p13 (EXT2), and 19p (EXT3). Both the EXT1 and EXT2 genes have been cloned recently and define a new family of potential tumor suppressor genes. This is the first study in which mutation screening has been performed for both the EXT1 and EXT2 genes prior to any linkage analysis. We have screened 17 probands with the HME phenotype, for alterations in all translated exons and flanking intronic sequences, in the EXT1 and EXT2 genes, by conformation-sensitive gel electrophoresis. We found the disease-causing mutation in 12 families (70%), 7 (41%) of which have EXT1 mutations and 5 (29%) EXT2 mutations. Together with the previously described 1-bp deletion in exon 6, which is present in 2 of our families, we report five new mutations in EXT1. Two are missense mutations in exon 2 (G339D and R340C), and the other three alterations (a nonsense mutation, a frameshift, and a splicing mutation) are likely to result in truncated nonfunctional proteins. Four new mutations are described in EXT2. A missense mutation (D227N) was found in 2 different families; the other three alterations (two nonsense mutations and one frameshift mutation) lead directly or indirectly to premature stop codons. The missense mutations in EXT1 and EXT2 may pinpoint crucial domains in both proteins and therefore give clues for the understanding of the pathophysiology of this skeletal disorder.

          Related collections

          Author and article information

          Comments

          Comment on this article