7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A bibliometric analysis of researches on flap endonuclease 1 from 2005 to 2019

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Flap endonuclease 1 (FEN1) is a structure-specific nuclease that plays a role in a variety of DNA metabolism processes. FEN1 is important for maintaining genomic stability and regulating cell growth and development. It is associated with the occurrence and development of several diseases, especially cancers. There is a lack of systematic bibliometric analyses focusing on research trends and knowledge structures related to FEN1.

          Purpose

          To analyze hotspots, the current state and research frontiers performed for FEN1 over the past 15 years.

          Methods

          Publications were retrieved from the Web of Science Core Collection (WoSCC) database, analyzing publication dates ranging from 2005 to 2019. VOSviewer1.6.15 and Citespace5.7 R1 were used to perform a bibliometric analysis in terms of countries, institutions, authors, journals and research areas related to FEN1. A total of 421 publications were included in this analysis.

          Results

          Our findings indicated that FEN1 has received more attention and interest from researchers in the past 15 years. Institutes in the United States, specifically the Beckman Research Institute of City of Hope published the most research related to FEN1. Shen BH, Zheng L and Bambara Ra were the most active researchers investigating this endonuclease and most of this research was published in the Journal of Biological Chemistry. The main scientific areas of FEN1 were related to biochemistry, molecular biology, cell biology, genetics and oncology. Research hotspots included biological activities, DNA metabolism mechanisms, protein-protein interactions and gene mutations. Research frontiers included oxidative stress, phosphorylation and tumor progression and treatment.

          Conclusion

          This bibliometric study may aid researchers in the understanding of the knowledge base and research frontiers associated with FEN1. In addition, emerging hotspots for research can be used as the subjects of future studies.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Searching for intellectual turning points: progressive knowledge domain visualization.

          C. Chen (2004)
          This article introduces a previously undescribed method progressively visualizing the evolution of a knowledge domain's cocitation network. The method first derives a sequence of cocitation networks from a series of equal-length time interval slices. These time-registered networks are merged and visualized in a panoramic view in such a way that intellectually significant articles can be identified based on their visually salient features. The method is applied to a cocitation study of the superstring field in theoretical physics. The study focuses on the search of articles that triggered two superstring revolutions. Visually salient nodes in the panoramic view are identified, and the nature of their intellectual contributions is validated by leading scientists in the field. The analysis has demonstrated that a search for intellectual turning points can be narrowed down to visually salient nodes in the visualized network. The method provides a promising way to simplify otherwise cognitively demanding tasks to a search for landmarks, pivots, and hubs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging trends and new developments in regenerative medicine: a scientometric update (2000 - 2014).

            Our previous scientometric review of regenerative medicine provides a snapshot of the fast-growing field up to the end of 2011. The new review identifies emerging trends and new developments appearing in the literature of regenerative medicine based on relevant articles and reviews published between 2000 and the first month of 2014. Multiple datasets of publications relevant to regenerative medicine are constructed through topic search and citation expansion to ensure adequate coverage of the field. Networks of co-cited references representing the literature of regenerative medicine are constructed and visualized based on a combined dataset of 71,393 articles published between 2000 and 2014. Structural and temporal dynamics are identified in terms of most active topical areas and cited references. New developments are identified in terms of newly emerged clusters and research areas. Disciplinary-level patterns are visualized in dual-map overlays. While research in induced pluripotent stem cells remains the most prominent area in the field of regenerative medicine, research related to clinical and therapeutic applications in regenerative medicine has experienced a considerable growth. In addition, clinical and therapeutic developments in regenerative medicine have demonstrated profound connections with the induced pluripotent stem cell research and stem cell research in general. A rapid adaptation of graphene-based nanomaterials in regenerative medicine is evident. Both basic research represented by stem cell research and application-oriented research typically found in tissue engineering are now increasingly integrated in the scientometric landscape of regenerative medicine. Tissue engineering is an interdisciplinary field in its own right. Advances in multiple disciplines such as stem cell research and graphene research have strengthened the connections between tissue engineering and regenerative medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polymerase dynamics at the eukaryotic DNA replication fork.

              This review discusses recent insights in the roles of DNA polymerases (Pol) delta and epsilon in eukaryotic DNA replication. A growing body of evidence specifies Pol epsilon as the leading strand DNA polymerase and Pol delta as the lagging strand polymerase during undisturbed DNA replication. New evidence supporting this model comes from the use of polymerase mutants that show an asymmetric mutator phenotype for certain mispairs, allowing an unambiguous strand assignment for these enzymes. On the lagging strand, Pol delta corrects errors made by Pol alpha during Okazaki fragment initiation. During Okazaki fragment maturation, the extent of strand displacement synthesis by Pol delta determines whether maturation proceeds by the short or long flap processing pathway. In the more common short flap pathway, Pol delta coordinates with the flap endonuclease FEN1 to degrade initiator RNA, whereas in the long flap pathway, RNA removal is initiated by the Dna2 nuclease/helicase.
                Bookmark

                Author and article information

                Contributors
                yeteng@cmu.edu.cn
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                7 April 2021
                7 April 2021
                2021
                : 21
                : 374
                Affiliations
                GRID grid.412636.4, Department of Medical Oncology, , The First Hospital of China Medical University, ; Shenyang, 110001 China
                Article
                8101
                10.1186/s12885-021-08101-2
                8028219
                33827468
                1c345aa6-346f-4534-8f61-89ac5e8fb8cb
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 27 December 2020
                : 24 March 2021
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2021

                Oncology & Radiotherapy
                flap endonuclease 1,bibliometrics,citespace,cancer
                Oncology & Radiotherapy
                flap endonuclease 1, bibliometrics, citespace, cancer

                Comments

                Comment on this article