15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The potential impact of recent insights into proteomic changes associated with glaucoma

      1 , 1 , 1 , 1 , 1
      Expert Review of Proteomics
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references244

          • Record: found
          • Abstract: found
          • Article: not found

          The role of oxidative stress in glaucoma.

          DNA damage is related to a variety of degenerative diseases such as cancer, atherosclerosis and neurodegenerative diseases, depending on the tissue affected. Increasing evidence indicates that reactive oxygen species (ROS) play a key role in the pathogenesis of primary open angle glaucoma (POAG), the main cause of irreversible blindness worldwide. Oxidative DNA damage is significantly increased in the ocular epithelium regulating aqueous humor outflow, i.e., the trabecular meshwork (TM), of glaucomatous patients compared to controls. The pathogenic role of ROS in glaucoma is supported by various experimental findings, including (a) resistance to aqueous humor outflow is increased by hydrogen peroxide by inducing TM degeneration; (b) TM possesses remarkable antioxidant activities, mainly related to superoxide dismutase-catalase and glutathione pathways that are altered in glaucoma patients; and (c) intraocular-pressure increase and severity of visual-field defects in glaucoma patients parallel the amount of oxidative DNA damage affecting TM. Vascular alterations, which are often associated with glaucoma, could contribute to the generation of oxidative damage. Oxidative stress, occurring not only in TM but also in retinal cells, appears to be involved in the neuronal cell death affecting the optic nerve in POAG. The highlighting of the pathogenic role of ROS in POAG has implications for the prevention of this disease as indicated by the growing number of studies using genetic analyses to identify susceptible individuals and of clinical trials testing the efficacy of antioxidant drugs for POAG management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): a systematic review and meta-analysis

            Systematic review of published population based surveys to examine the relationship between primary open angle glaucoma (POAG) prevalence and demographic factors. A literature search identified population-based studies with quantitative estimates of POAG prevalence (to October 2014). Multilevel binomial logistic regression of log-odds of POAG was used to examine the effect of age and gender among populations of different geographical and ethnic origins, adjusting for study design factors. Eighty-one studies were included (37 countries, 216 214 participants, 5266 POAG cases). Black populations showed highest POAG prevalence, with 5.2% (95% credible interval (CrI) 3.7%, 7.2%) at 60 years, rising to 12.2% (95% CrI 8.9% to 16.6%) at 80 years. Increase in POAG prevalence per decade of age was greatest among Hispanics (2.31, 95% CrI 2.12, 2.52) and White populations (1.99, 95% CrI 1.86, 2.12), and lowest in East and South Asians (1.48, 95% CrI 1.39, 1.57; 1.56, 95% CrI 1.31, 1.88, respectively). Men were more likely to have POAG than women (1.30, 95% CrI 1.22, 1.41). Older studies had lower POAG prevalence, which was related to the inclusion of intraocular pressure in the glaucoma definition. Studies with visual field data on all participants had a higher POAG prevalence than those with visual field data on a subset. Globally 57.5 million people (95% CI 46.4 to 73.1 million) were affected by POAG in 2015, rising to 65.5 million (95% CrI 52.8, 83.2 million) by 2020. This systematic review provides the most precise estimates of POAG prevalence and shows omitting routine visual field assessment in population surveys may have affected case ascertainment. Our findings will be useful to future studies and healthcare planning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress and mitochondrial dysfunction in glaucoma.

              Mitochondrial dysfunction increases reactive oxygen species (ROS) production and when this overwhelms the cellular antioxidant defences, oxidative stress ensues. Oxidative stress is recognized as a common pathologic pathway in many neurodegenerative diseases. Recent reports have also demonstrated oxidative stress in ocular tissues derived from experimental glaucoma models and clinical samples. There is also accumulating evidence pointing to mitochondrial dysfunction being present in some glaucoma patients. Thus oxidative stress from mitochondrial dysfunction may also play a causal role in glaucoma. The mechanisms by which oxidative stress may induce retinal ganglion cell loss in glaucoma are not fully understood but could include direct neurotoxic effects from ROS or indirect damage from oxidative stress-induced dysfunction of glial cells. This review will consider the evidence for the presence of oxidative stress in glaucoma; the mechanisms by which oxidative stress may contribute to disease pathogenesis; and also consider therapeutic approaches that target oxidative stress as a means of protecting against optic nerve degeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Expert Review of Proteomics
                Expert Review of Proteomics
                Informa UK Limited
                1478-9450
                1744-8387
                February 17 2017
                April 03 2017
                March 08 2017
                April 03 2017
                : 14
                : 4
                : 311-334
                Affiliations
                [1 ] Experimental Ophthalmology, University Medical Center, Mainz, Germany
                Article
                10.1080/14789450.2017.1298448
                28271721
                1caca343-9dd1-4098-ad64-3c7f2b055645
                © 2017
                History

                Comments

                Comment on this article