22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The surface chemistry and adsorption behavior of submicrometer cellulosic and lignin particles have drawn wide-ranging interest in the scientific community. Here, we introduce their assembly at fluid/fluid interfaces in Pickering systems and discuss their role in reducing the oil/water interfacial tension, limiting flocculation and coalescence, and endowing given functional properties. We discuss the stabilization of multiphase systems by cellulosic and lignin colloids and the opportunities for their adoption. They can be used alone, as dual components, or in combination with amphiphilic molecules for the design of multiphase systems relevant to household products, paints, coatings, pharmaceutical, foodstuff, and cosmetic formulations. This invited feature article summarizes some of our work and that of colleagues to introduce the readers to this fascinating and topical area.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose.

          Never-dried and once-dried hardwood celluloses were oxidized by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated system, and highly crystalline and individualized cellulose nanofibers, dispersed in water, were prepared by mechanical treatment of the oxidized cellulose/water slurries. When carboxylate contents formed from the primary hydroxyl groups of the celluloses reached approximately 1.5 mmol/g, the oxidized cellulose/water slurries were mostly converted to transparent and highly viscous dispersions by mechanical treatment. Transmission electron microscopic observation showed that the dispersions consisted of individualized cellulose nanofibers 3-4 nm in width and a few microns in length. No intrinsic differences between never-dried and once-dried celluloses were found for preparing the dispersion, as long as carboxylate contents in the TEMPO-oxidized celluloses reached approximately 1.5 mmol/g. Changes in viscosity of the dispersions during the mechanical treatment corresponded with those in the dispersed states of the cellulose nanofibers in water.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

            With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology-a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview.

              In nature, cellulose, lignocellulose and lignin are major sources of plant biomass; therefore, their recycling is indispensable for the carbon cycle. Each polymer is degraded by a variety of microorganisms which produce a battery of enzymes that work synergically. In the near future, processes that use lignocellulolytic enzymes or are based on microorganisms could lead to new, environmentally friendly technologies. This study reviews recent advances in the various biological treatments that can turn these three lignicellulose biopolymers into alternative fuels. In addition, biotechnological innovations based on natural delignification and applied to pulp and paper manufacture are also outlined.
                Bookmark

                Author and article information

                Journal
                Langmuir
                Langmuir
                la
                langd5
                Langmuir
                American Chemical Society
                0743-7463
                1520-5827
                27 July 2018
                22 January 2019
                : 35
                : 3
                : 571-588
                Affiliations
                []Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , FI-00076 Aalto, Finland
                []Department of Applied Physics, School of Science, Aalto University , FI-00076 Aalto, Finland
                Author notes
                [* ]E-mail: orlando.rojas@ 123456aalto.fi . Tel: +358-(0)50 512 4227.
                Article
                10.1021/acs.langmuir.8b01288
                6344914
                30052451
                1cb4082e-960d-4ad6-8884-2ccd489e747b
                Copyright © 2018 American Chemical Society

                This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

                History
                : 19 April 2018
                : 24 July 2018
                Categories
                Invited Feature Article
                Custom metadata
                la8b01288
                la-2018-01288d

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article