11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Space-time variability in environmental thermal properties and snail thermoregulatory behaviour : Variability in snail thermoregulatory behaviour

      ,
      Functional Ecology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Book: not found

          Thermal Adaptation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming.

            Increasing concern about the impacts of global warming on biodiversity has stimulated extensive discussion, but methods to translate broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of increased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most "cold-blooded" terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate warming on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals' capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase maintenance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global metabolic impacts of recent climate warming.

              Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.
                Bookmark

                Author and article information

                Journal
                Functional Ecology
                Wiley-Blackwell
                02698463
                October 2011
                October 2011
                : 25
                : 5
                : 1040-1050
                Article
                10.1111/j.1365-2435.2011.01859.x
                1ccb55ed-8eb3-4442-9461-4b74a8ba942d
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article