4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Macrofaunal burrowing enhances deep-sea carbonate lithification on the Southwest Indian Ridge

      , , , , , ,
      Biogeosciences
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> Deep-sea carbonates represent an important type of sedimentary rock due to their effect on the composition of the upper oceanic crust and their contribution to deep-sea geochemical cycles. However, the role of deep-sea macrofauna in carbonate lithification remains poorly understood. A large lithified carbonate area, characterized by thriving benthic faunas and a tremendous amount of burrows, was discovered in 2008, blanketing the seafloor of the ultraslowly spreading Southwest Indian Ridge (SWIR). Benthic inhabitants – including echinoids, polychaetes, gastropods and crustaceans – are abundant in this carbonate lithified area. The burrowing features within these carbonate rocks, as well as the factors that may influence deep-sea carbonate lithification, were examined. We suggest that burrowing in these carbonate rocks enhances deep-sea carbonate lithification. We propose that active bioturbation may trigger the dissolution of the original calcite and thus accelerate deep-sea carbonate lithification on mid-ocean ridges. Macrofaunal burrowing provides a novel driving force for deep-sea carbonate lithification at the seafloor, illuminating the geological and biological importance of bioturbation in global deep-sea carbonate rocks.</p>

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          The chemical composition of subducting sediment and its consequences for the crust and mantle

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An ultraslow-spreading class of ocean ridge.

            New investigations of the Southwest Indian and Arctic ridges reveal an ultraslow-spreading class of ocean ridge that is characterized by intermittent volcanism and a lack of transform faults. We find that the mantle beneath such ridges is emplaced continuously to the seafloor over large regions. The differences between ultraslow- and slow-spreading ridges are as great as those between slow- and fast-spreading ridges. The ultraslow-spreading ridges usually form at full spreading rates less than about 12 mm yr(-1), though their characteristics are commonly found at rates up to approximately 20 mm yr(-1). The ultraslow-spreading ridges consist of linked magmatic and amagmatic accretionary ridge segments. The amagmatic segments are a previously unrecognized class of accretionary plate boundary structure and can assume any orientation, with angles relative to the spreading direction ranging from orthogonal to acute. These amagmatic segments sometimes coexist with magmatic ridge segments for millions of years to form stable plate boundaries, or may displace or be displaced by transforms and magmatic ridge segments as spreading rate, mantle thermal structure and ridge geometry change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bioturbation: a fresh look at Darwin's last idea.

              Bioturbation refers to the biological reworking of soils and sediments, and its importance for soil processes and geomorphology was first realised by Charles Darwin, who devoted his last scientific book to the subject. Here, we review some new insights into the evolutionary and ecological role of bioturbation that would have probably amazed Darwin. In modern ecological theory, bioturbation is now recognised as an archetypal example of 'ecosystem engineering', modifying geochemical gradients, redistributing food resources, viruses, bacteria, resting stages and eggs. From an evolutionary perspective, recent investigations provide evidence that bioturbation had a key role in the evolution of metazoan life at the end of the Precambrian Era.
                Bookmark

                Author and article information

                Journal
                Biogeosciences
                Biogeosciences
                Copernicus GmbH
                1726-4189
                2018
                October 30 2018
                : 15
                : 21
                : 6387-6397
                Article
                10.5194/bg-15-6387-2018
                1ccd9290-9486-42df-8f95-4e52542bb85f
                © 2018

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article