29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Grouper tshβ Promoter-Driven Transgenic Zebrafish Marks Proximal Kidney Tubule Development

      research-article
      , , , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kidney tubule plays a critical role in recovering or secreting solutes, but the detailed morphogenesis remains unclear. Our previous studies have found that grouper tshβ ( gtshβ) is also expressed in kidney, however, the distribution significance is still unknown. To understand the gtshβ role and kidney tubule morphogenesis, here, we have generated a transgenic zebrafish line Tg(gtshβ:GFP) with green fluorescent protein driven by the gtshβ promoter. Similar to the endogenous tshβ in zebrafish or in grouper, the gtshβ promoter-driven GFP is expressed in pituitary and kidney, and the developing details of proximal kidney tubule are marked in the transgenic zebrafish line. The gfp initially transcribes at 16 hours post fertilization (hpf) above the dorsal mesentery, and partially co-localizes with pronephric tubular markers slc20a1a and cdh17. Significantly, the GFP specifically localizes in proximal pronephric segments during embryogenesis and resides at kidney duct epithelium in adult fish. To test whether the gtshβ promoter-driven GFP may serve as a readout signal of the tubular development, we have treated the embryos with retinoic acid signaing (RA) reagents, in which exogenous RA addition results in a distal extension of the proximal segments, while RA inhibition induces a weakness and shortness of the proximal segments. Therefore, this transgenic line provides a useful tool for genetic or chemical analysis of kidney tubule.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Wnt/beta-catenin signaling promotes renal interstitial fibrosis.

          Wnts compose a family of signaling proteins that play an essential role in kidney development, but their expression in adult kidney is thought to be silenced. Here, we analyzed the expression and regulation of Wnts and their receptors and antagonists in normal and fibrotic kidneys after obstructive injury. In the normal mouse kidney, the vast majority of 19 different Wnts and 10 frizzled receptor genes was expressed at various levels. After unilateral ureteral obstruction, all members of the Wnt family except Wnt5b, Wnt8b, and Wnt9b were upregulated in the fibrotic kidney with distinct dynamics. In addition, the expression of most Fzd receptors and Wnt antagonists was also induced. Obstructive injury led to a dramatic accumulation of beta-catenin in the cytoplasm and nuclei of renal tubular epithelial cells, indicating activation of the canonical pathway of Wnt signaling. Numerous Wnt/beta-catenin target genes (c-Myc, Twist, lymphoid enhancer-binding factor 1, and fibronectin) were induced, and their expression was closely correlated with renal beta-catenin abundance. Delivery of the Wnt antagonist Dickkopf-1 gene significantly reduced renal beta-catenin accumulation and inhibited the expression of Wnt/beta-catenin target genes. Furthermore, gene therapy with Dickkopf-1 inhibited myofibroblast activation; suppressed expression of fibroblast-specific protein 1, type I collagen, and fibronectin; and reduced total collagen content in the model of obstructive nephropathy. In summary, these results establish a role for Wnt/beta-catenin signaling in the pathogenesis of renal fibrosis and identify this pathway as a potential therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Zebrafish: a model system for the study of human disease.

            K. Dooley (2000)
            The zebrafish (Danio rerio) is a powerful model organism for the study of vertebrate biology, being well suited to both developmental and genetic analysis. Large-scale genetic screens have identified hundreds of mutant phenotypes, many of which resemble human clinical disorders. The creation of critical genetic reagents, coupled with the rapid progress of the zebrafish genome initiative directed by the National Institutes of Health, are bringing this model system to its full potential for the study of vertebrate biology, physiology and human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nephric lineage specification by Pax2 and Pax8.

              The mammalian kidney develops in three successive steps from the initial pronephros via the mesonephros to the adult metanephros. Although the nephric lineage is specified during pronephros induction, no single regulator, including the transcription factor Pax2 or Pax8, has yet been identified to control this initial phase of kidney development. In this paper, we demonstrate that mouse embryos lacking both Pax2 and Pax8 are unable to form the pronephros or any later nephric structures. In these double-mutant embryos, the intermediate mesoderm does not undergo the mesenchymal-epithelial transitions required for nephric duct formation, fails to initiate the kidney-specific expression of Lim1 and c-Ret, and is lost by apoptosis 1 d after failed pronephric induction. Conversely, retroviral misexpression of Pax2 was sufficient to induce ectopic nephric structures in the intermediate mesoderm and genital ridge of chick embryos. Together, these data identify Pax2 and Pax8 as critical regulators that specify the nephric lineage.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                6 June 2014
                : 9
                : 6
                : e97806
                Affiliations
                [1]State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
                Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YW JFG. Performed the experiments: YW ZHS LZ ZL. Analyzed the data: YW ZHS JFG. Contributed reagents/materials/analysis tools: YW JFG. Wrote the paper: YW JFG.

                Article
                PONE-D-13-50008
                10.1371/journal.pone.0097806
                4048157
                24905828
                1cf59082-321b-41fe-a65c-034edd7f4119
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 November 2013
                : 24 April 2014
                Page count
                Pages: 10
                Funding
                This work was supported by grants from the National Major Basic Research Program (2010CB126301), the National 863 High Technology Research Program (Grants No 2012AA092201-3), the Ministry of Agriculture of China within the special Fund for Agro-scientific Research in the Public Interest (200903045), the National Natural Science Foundation of China (Grant No.30971414). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Renal System
                Renal Anatomy
                Biotechnology
                Genetic Engineering
                Transgenic Engineering
                Developmental Biology
                Organism Development
                Organogenesis
                Embryology
                Morphogenesis
                Organisms
                Animals
                Vertebrates
                Fishes
                Osteichthyes
                Zebrafish
                Research and Analysis Methods
                Model Organisms
                Animal Models

                Uncategorized
                Uncategorized

                Comments

                Comment on this article