3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biotin, a universal and essential cofactor: synthesis, ligation and regulation

      1 , 2 , 2 , 3
      FEMS Microbiology Reviews
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Biotin is a covalently attached enzyme cofactor required for intermediary metabolism in all three domains of life. Several important human pathogens (e.g. Mycobacterium tuberculosis) require biotin synthesis for pathogenesis. Humans lack a biotin synthetic pathway hence bacterial biotin synthesis is a prime target for new therapeutic agents. The biotin synthetic pathway is readily divided into early and late segments. Although pimelate, a 7-carbon α,ω-dicarboxylic acid that contributes 7 of the 10 biotin carbons atoms, was long known to be a biotin precursor, its biosynthetic pathway was a mystery until the Escherichia colipathway was discovered in 2010. Since then, diverse bacteria encode evolutionarily distinct enzymes that replace enzymes in the E. coli pathway. Two new bacterial pimelate synthesis pathways have been elucidated. In contrast to the early pathway, the late pathway, assembly of the fused rings of the cofactor, was long thought settled. However, a new enzyme that bypasses a canonical enzyme was recently discovered as well as homologs of another canonical enzyme that functions in synthesis of another protein-bound coenzyme, lipoic acid. Most bacteria tightly regulate transcription of the biotin synthetic genes in a biotin-responsive manner. The bifunctional biotin ligases which catalyze attachment of biotin to its cognate enzymes and repress biotin gene transcription are best understood regulatory system.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial membrane lipids: diversity in structures and pathways.

          For many decades, Escherichia coli was the main model organism for the study of bacterial membrane lipids. The results obtained served as a blueprint for membrane lipid biochemistry, but it is clear now that there is no such thing as a typical bacterial membrane lipid composition. Different bacterial species display different membrane compositions and even the membrane composition of cells belonging to a single species is not constant, but depends on the environmental conditions to which the cells are exposed. Bacterial membranes present a large diversity of amphiphilic lipids, including the common phospholipids phosphatidylglycerol, phosphatidylethanolamine and cardiolipin, the less frequent phospholipids phosphatidylcholine, and phosphatidylinositol and a variety of other membrane lipids, such as for example ornithine lipids, glycolipids, sphingolipids or hopanoids among others. In this review, we give an overview about the membrane lipid structures known in bacteria, the different metabolic pathways involved in their formation, and the distribution of membrane lipids and metabolic pathways across taxonomical groups.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Structure and mechanism of ABC transporters

            All living organisms depend on primary and secondary membrane transport for the supply of external nutrients and removal or sequestration of unwanted (toxic) compounds. Due to the chemical diversity of cellular molecules, it comes as no surprise that a significant part of the proteome is dedicated to the active transport of cargo across the plasma membrane or the membranes of subcellular organelles. Transport against a chemical gradient can be driven by, for example, the free energy change associated with ATP hydrolysis (primary transport), or facilitated by the potential energy of the chemical gradient of another molecule (secondary transport). Primary transporters include the rotary motor ATPases (F-, A-, and V-ATPases), P-type ATPases and a large family of integral membrane proteins referred to as “ABC” (ATP binding cassette) transporters. ABC transporters are widespread in all forms of life and are characterized by two nucleotide-binding domains (NBD) and two transmembrane domains (TMDs). ATP hydrolysis on the NBD drives conformational changes in the TMD, resulting in alternating access from inside and outside of the cell for unidirectional transport across the lipid bilayer. Common to all ABC transporters is a signature sequence or motif, LSGGQ, that is involved in nucleotide binding. Both importing and exporting ABC transporters are found in bacteria, whereas the majority of eukaryotic family members function in the direction of export. Recent progress with the X-ray crystal structure determination of a variety of bacterial and eukaryotic ABC transporters has helped to advance our understanding of the ATP hydrolysis-driven transport mechanism but has also illustrated the large structural and functional diversity within the family.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The structural biology of type II fatty acid biosynthesis.

              The type II fatty acid synthetic pathway is the principal route for the production of membrane phospholipid acyl chains in bacteria and plants. The reaction sequence is carried out by a series of individual soluble proteins that are each encoded by a discrete gene, and the pathway intermediates are shuttled between the enzymes as thioesters of an acyl carrier protein. The Escherichia coli system is the paradigm for the study of this system, and high-resolution X-ray and/or NMR structures of representative members of every enzyme in the type II pathway are now available. The structural biology of these proteins reveals the specific three-dimensional features of the enzymes that explain substrate recognition, chain length specificity, and the catalytic mechanisms that define their roles in producing the multitude of products generated by the type II system. These structures are also a valuable resource to guide antibacterial drug discovery.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                FEMS Microbiology Reviews
                Oxford University Press (OUP)
                1574-6976
                January 11 2021
                January 11 2021
                Affiliations
                [1 ]Faculty of Medicine, KMITL 1 Soi Chalong Krung 1, Lat Krabang Subdistrict, Lat Krabang District, Bangkok, Thailand, 10520
                [2 ]Department of Microbiology, University of Illinois, B103 CLSL 601 S Goodwin Ave, Urbana, IL 61801, USA
                [3 ]Department of Biochemistry, University of Illinois, B103 CLSL 601 S Goodwin Ave, Urbana, IL 61801, USA
                Article
                10.1093/femsre/fuab003
                33428728
                1d4d8d5e-c9e1-43db-a1c8-3537b27f983a
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article