36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer is the most common cancer, and the second cause of cancer-related deaths (after lung cancer) among women. Developing tumor metastasis and invasion is the most important cause of death in breast cancer patients. Several key factors participate in breast cancer metastasis including long noncoding RNAs (lncRNAs). lncRNAs are a category of cellular RNAs that are longer than 200 nucleotides in length. Accumulating evidence suggests that lncRNAs have the potential to be promising diagnostic, prognostic biomarkers and therapeutic targets in breast cancer. Understanding the role of lncRNAs and their mechanisms of functions might help to further discovery of breast cancer biological characteristics. In this review, we discuss physiological functions, epigenetic regulation, transcriptional regulation of lncRNAs, and their important role in tumor progression and metastasis. Some lncRNAs function as oncogenes and some function as tumor suppressors. Interestingly, recent reports depict that hypomethylation of promoters of lncRNAs play a pivotal role in cancer progression, suggesting the importance of epigenetic regulation. Furthermore, we discuss the role of lncRNAs in exosomes and their function in drug resistance, and therapeutic importance of exosomal lncRNAs in cancer biology. In summary, lncRNAs have a great potential to consider them as novel prognostic biomarkers as well as new therapeutic targets in breast cancer.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene.

          A 42 kb region on human chromosome 9p21 encodes for three distinct tumor suppressors, p16(INK4A), p14(ARF) and p15(INK4B), and is altered in an estimated 30-40% of human tumors. The expression of the INK4A-ARF-INK4B gene cluster is silenced by polycomb during normal cell growth and is activated by oncogenic insults and during aging. How the polycomb is recruited to repress this gene cluster is unclear. Here, we show that expression of oncogenic Ras, which stimulates the expression of p15(INK4B) and p16(INK4A), but not p14(ARF), inhibits the expression of ANRIL (antisense non-coding RNA in the INK4 locus), a 3.8 kb-long non-coding RNA expressed in the opposite direction from INK4A-ARF-INK4B. We show that the p15(INK4B) locus is bound by SUZ12, a component of polycomb repression complex 2 (PRC2), and is H3K27-trimethylated. Notably, depletion of ANRIL disrupts the SUZ12 binding to the p15(INK4B) locus, increases the expression of p15(INK4B), but not p16(INK4A) or p14(ARF), and inhibits cellular proliferation. Finally, RNA immunoprecipitation demonstrates that ANRIL binds to SUZ12 in vivo. Collectively, these results suggest a model in which ANRIL binds to and recruits PRC2 to repress the expression of p15(INK4B) locus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment

            Exosomes are cell-derived nanovesicles (50–150 nm), which mediate intercellular communication, and are candidate therapeutic agents. However, inefficiency of exosomal message transfer, such as mRNA, and lack of methods to create designer exosomes have hampered their development into therapeutic interventions. Here, we report a set of EXOsomal transfer into cells (EXOtic) devices that enable efficient, customizable production of designer exosomes in engineered mammalian cells. These genetically encoded devices in exosome producer cells enhance exosome production, specific mRNA packaging, and delivery of the mRNA into the cytosol of target cells, enabling efficient cell-to-cell communication without the need to concentrate exosomes. Further, engineered producer cells implanted in living mice could consistently deliver cargo mRNA to the brain. Therapeutic catalase mRNA delivery by designer exosomes attenuated neurotoxicity and neuroinflammation in in vitro and in vivo models of Parkinson’s disease, indicating the potential usefulness of the EXOtic devices for RNA delivery-based therapeutic applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Efficient RNA drug delivery using red blood cell extracellular vesicles

              Most of the current methods for programmable RNA drug therapies are unsuitable for the clinic due to low uptake efficiency and high cytotoxicity. Extracellular vesicles (EVs) could solve these problems because they represent a natural mode of intercellular communication. However, current cellular sources for EV production are limited in availability and safety in terms of horizontal gene transfer. One potentially ideal source could be human red blood cells (RBCs). Group O-RBCs can be used as universal donors for large-scale EV production since they are readily available in blood banks and they are devoid of DNA. Here, we describe and validate a new strategy to generate large-scale amounts of RBC-derived EVs for the delivery of RNA drugs, including antisense oligonucleotides, Cas9 mRNA, and guide RNAs. RNA drug delivery with RBCEVs shows highly robust microRNA inhibition and CRISPR–Cas9 genome editing in both human cells and xenograft mouse models, with no observable cytotoxicity.
                Bookmark

                Author and article information

                Journal
                Oncogene
                Oncogene
                Springer Science and Business Media LLC
                0950-9232
                1476-5594
                October 10 2019
                Article
                10.1038/s41388-019-1040-y
                31601996
                1d5fcf86-9189-4b6b-a972-e2996d569a3e
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article