4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A new force field for simulating phosphatidylcholine bilayers.

      Journal of Computational Chemistry
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new force field for the simulation of dipalmitoylphosphatidylcholine (DPPC) in the liquid-crystalline, fluid phase at zero surface tension is presented. The structure of the bilayer with the area per lipid (0.629 nm(2); experiment 0.629-0.64 nm(2)), the volume per lipid (1.226 nm(3); experiment 1.229-1.232 nm(3)), and the ordering of the palmitoyl chains (order parameters) are all in very good agreement with experiment. Experimental electron density profiles are well reproduced in particular with regard to the penetration of water into the bilayer. The force field was further validated by simulating the spontaneous assembly of DPPC into a bilayer in water. Notably, the timescale on which membrane sealing was observed using this model appears closer to the timescales for membrane resealing suggested by electroporation experiments than previous simulations using existing models.

          Related collections

          Author and article information

          Journal
          19827145
          10.1002/jcc.21396

          Comments

          Comment on this article

          scite_