39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Automated Phenotype-Driven Approach ( GeneForce) for Refining Metabolic and Regulatory Models

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Integrated constraint-based metabolic and regulatory models can accurately predict cellular growth phenotypes arising from genetic and environmental perturbations. Challenges in constructing such models involve the limited availability of information about transcription factor—gene target interactions and computational methods to quickly refine models based on additional datasets. In this study, we developed an algorithm, GeneForce, to identify incorrect regulatory rules and gene-protein-reaction associations in integrated metabolic and regulatory models. We applied the algorithm to refine integrated models of Escherichia coli and Salmonella typhimurium, and experimentally validated some of the algorithm's suggested refinements. The adjusted E. coli model showed improved accuracy (∼80.0%) for predicting growth phenotypes for 50,557 cases (knockout mutants tested for growth in different environmental conditions). In addition to identifying needed model corrections, the algorithm was used to identify native E. coli genes that, if over-expressed, would allow E. coli to grow in new environments. We envision that this approach will enable the rapid development and assessment of genome-scale metabolic and regulatory network models for less characterized organisms, as such models can be constructed from genome annotations and cis-regulatory network predictions.

          Author Summary

          Computational models of biological networks are useful for explaining experimental observations and predicting phenotypic behaviors. The construction of genome-scale metabolic and regulatory models is still a labor-intensive process, even with the availability of genome sequences and high-throughput datasets. Since our knowledge about biological systems is incomplete, these models are iteratively refined and validated as we discover new connections in biological networks, and eliminate inconsistencies between model predictions and experimental observations. To enable researchers to quickly determine what causes discrepancies between observed phenotypes and model predictions, we developed a new approach ( GeneForce) that automatically corrects integrated metabolic and transcriptional regulatory network models. To illustrate the utility of the approach, we applied the developed method to well-curated models of E. coli metabolism and regulation. We found that the approach significantly improved the accuracy of phenotype predictions and suggested changes needed to the metabolic and/or regulatory models. We also used the approach to identify rescue non-growth phenotypes and to evaluate the conservation of transcriptional regulatory interactions between E. coli and S. typhimurium. The developed approach helps reconcile discrepancies between model predictions and experimental data by hypothesizing required network changes, and helps facilitate the development of new genome-scale models.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information

          An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements associated with growth of E. coli and (3) thermodynamic information for the included chemical reactions. The conversion of this metabolic network reconstruction into an in silico model is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency analysis, is introduced, in which reactions were checked for consistency with thermodynamic reversibility estimates. Applications demonstrating the capabilities of the genome-scale metabolic model to predict high-throughput experimental growth and gene deletion phenotypic screens are presented. The increased scope and computational capability using this new reconstruction is expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of alternate optimal solutions in constraint-based genome-scale metabolic models.

            Genome-scale constraint-based models of several organisms have now been constructed and are being used for model driven research. A key issue that may arise in the use of such models is the existence of alternate optimal solutions wherein the same maximal objective (e.g., growth rate) can be achieved through different flux distributions. Herein, we investigate the effects that alternate optimal solutions may have on the predicted range of flux values calculated using currently practiced linear (LP) and quadratic programming (QP) methods. An efficient LP-based strategy is described to calculate the range of flux variability that can be present in order to achieve optimal as well as suboptimal objective states. Sample results are provided for growth predictions of E. coli using glucose, acetate, and lactate as carbon substrates. These results demonstrate the extent of flux variability to be highly dependent on environmental conditions and network composition. In addition we examined the impact of alternate optima for growth under gene knockout conditions as calculated using QP-based methods. It was observed that calculations using QP-based methods can show significant variation in growth rate if the flux variability among alternate optima is high. The underlying biological significance and general source of such flux variability is further investigated through the identification of redundancies in the network (equivalent reaction sets) that lead to alternate solutions. Collectively, these results illustrate the variability inherent in metabolic flux distributions and the possible implications of this heterogeneity for constraint-based modeling approaches. These methods also provide an efficient and robust method to calculate the range of flux distributions that can be derived from quantitative fermentation data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of optimality in natural and perturbed metabolic networks.

              An important goal of whole-cell computational modeling is to integrate detailed biochemical information with biological intuition to produce testable predictions. Based on the premise that prokaryotes such as Escherichia coli have maximized their growth performance along evolution, flux balance analysis (FBA) predicts metabolic flux distributions at steady state by using linear programming. Corroborating earlier results, we show that recent intracellular flux data for wild-type E. coli JM101 display excellent agreement with FBA predictions. Although the assumption of optimality for a wild-type bacterium is justifiable, the same argument may not be valid for genetically engineered knockouts or other bacterial strains that were not exposed to long-term evolutionary pressure. We address this point by introducing the method of minimization of metabolic adjustment (MOMA), whereby we test the hypothesis that knockout metabolic fluxes undergo a minimal redistribution with respect to the flux configuration of the wild type. MOMA employs quadratic programming to identify a point in flux space, which is closest to the wild-type point, compatibly with the gene deletion constraint. Comparing MOMA and FBA predictions to experimental flux data for E. coli pyruvate kinase mutant PB25, we find that MOMA displays a significantly higher correlation than FBA. Our method is further supported by experimental data for E. coli knockout growth rates. It can therefore be used for predicting the behavior of perturbed metabolic networks, whose growth performance is in general suboptimal. MOMA and its possible future extensions may be useful in understanding the evolutionary optimization of metabolism.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                October 2010
                October 2010
                28 October 2010
                : 6
                : 10
                : e1000970
                Affiliations
                [1 ]Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
                [2 ]DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
                The Pennsylvania State University, United States of America
                Author notes

                Conceived and designed the experiments: DB JK JLR. Performed the experiments: DB JK. Analyzed the data: DB JK JLR. Wrote the paper: DB JK JLR. Developed the GeneForce approach: DB. Developed the regulatory formalism used in the approach: JK.

                Article
                10-PLCB-RA-2155R2
                10.1371/journal.pcbi.1000970
                2965739
                21060853
                1e0ec8e4-a20f-4082-88db-9600ac7d99ae
                Barua et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 April 2010
                : 23 September 2010
                Page count
                Pages: 15
                Categories
                Research Article
                Computational Biology
                Computational Biology/Metabolic Networks
                Computational Biology/Systems Biology
                Computational Biology/Transcriptional Regulation
                Microbiology/Microbial Evolution and Genomics
                Microbiology/Microbial Physiology and Metabolism

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article