6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-senescent drug screening by deep learning-based morphology senescence scoring

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances in deep learning technology have enabled complex task solutions. The accuracy of image classification tasks has improved owing to the establishment of convolutional neural networks (CNN). Cellular senescence is a hallmark of ageing and is important for the pathogenesis of ageing-related diseases. Furthermore, it is a potential therapeutic target. Specific molecular markers are used to identify senescent cells. Moreover senescent cells show unique morphology, which can be identified. We develop a successful morphology-based CNN system to identify senescent cells and a quantitative scoring system to evaluate the state of endothelial cells by senescence probability output from pre-trained CNN optimised for the classification of cellular senescence, Deep Learning-Based Senescence Scoring System by Morphology (Deep-SeSMo). Deep-SeSMo correctly evaluates the effects of well-known anti-senescent reagents. We screen for drugs that control cellular senescence using a kinase inhibitor library by Deep-SeSMo-based drug screening and identify four anti-senescent drugs. RNA sequence analysis reveals that these compounds commonly suppress senescent phenotypes through inhibition of the inflammatory response pathway. Thus, morphology-based CNN system can be a powerful tool for anti-senescent drug screening.

          Abstract

          Cellular senescence is a hallmark of ageing and is important for the pathogenesis of ageing-related diseases. Here, the authors develop a morphology-based deep learning system to identify senescent cells and a quantitative scoring system to evaluate the state of endothelial cells to evaluate the effects of anti-senescent reagents.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular senescence in aging and age-related disease: from mechanisms to therapy.

          Cellular senescence, a process that imposes permanent proliferative arrest on cells in response to various stressors, has emerged as a potentially important contributor to aging and age-related disease, and it is an attractive target for therapeutic exploitation. A wealth of information about senescence in cultured cells has been acquired over the past half century; however, senescence in living organisms is poorly understood, largely because of technical limitations relating to the identification and characterization of senescent cells in tissues and organs. Furthermore, newly recognized beneficial signaling functions of senescence suggest that indiscriminately targeting senescent cells or modulating their secretome for anti-aging therapy may have negative consequences. Here we discuss current progress and challenges in understanding the stressors that induce senescence in vivo, the cell types that are prone to senesce, and the autocrine and paracrine properties of senescent cells in the contexts of aging and age-related diseases as well as disease therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders.

            Advanced age is the main risk factor for most chronic diseases and functional deficits in humans, but the fundamental mechanisms that drive ageing remain largely unknown, impeding the development of interventions that might delay or prevent age-related disorders and maximize healthy lifespan. Cellular senescence, which halts the proliferation of damaged or dysfunctional cells, is an important mechanism to constrain the malignant progression of tumour cells. Senescent cells accumulate in various tissues and organs with ageing and have been hypothesized to disrupt tissue structure and function because of the components they secrete. However, whether senescent cells are causally implicated in age-related dysfunction and whether their removal is beneficial has remained unknown. To address these fundamental questions, we made use of a biomarker for senescence, p16(Ink4a), to design a novel transgene, INK-ATTAC, for inducible elimination of p16(Ink4a)-positive senescent cells upon administration of a drug. Here we show that in the BubR1 progeroid mouse background, INK-ATTAC removes p16(Ink4a)-positive senescent cells upon drug treatment. In tissues--such as adipose tissue, skeletal muscle and eye--in which p16(Ink4a) contributes to the acquisition of age-related pathologies, life-long removal of p16(Ink4a)-expressing cells delayed onset of these phenotypes. Furthermore, late-life clearance attenuated progression of already established age-related disorders. These data indicate that cellular senescence is causally implicated in generating age-related phenotypes and that removal of senescent cells can prevent or delay tissue dysfunction and extend healthspan.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of AMP-activated protein kinase in mechanism of metformin action.

              Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin's beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin's inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.
                Bookmark

                Author and article information

                Contributors
                yuasa@keio.jp
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                11 January 2021
                11 January 2021
                2021
                : 12
                : 257
                Affiliations
                [1 ]GRID grid.26091.3c, ISNI 0000 0004 1936 9959, Department of Cardiology, , Keio University School of Medicine, ; 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
                [2 ]GRID grid.26091.3c, ISNI 0000 0004 1936 9959, Center for Preventive Medicine, , Keio University School of Medicine, ; 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
                [3 ]GRID grid.412708.8, ISNI 0000 0004 1764 7572, Department of Healthcare Information Management, , The University of Tokyo Hospital, ; 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
                [4 ]GRID grid.258799.8, ISNI 0000 0004 0372 2033, Center for iPS Cell Research and Application, , Kyoto University, ; Kyoto, 606-8507 Japan
                Author information
                http://orcid.org/0000-0003-1413-0482
                http://orcid.org/0000-0001-5593-7552
                Article
                20213
                10.1038/s41467-020-20213-0
                7801636
                33431893
                1ee588dc-08ce-4bff-a1e1-53fee4c866de
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 June 2020
                : 17 November 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001691, MEXT | Japan Society for the Promotion of Science (JSPS);
                Award ID: 19K08549
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100001697, Keio University (Keio);
                Funded by: FundRef https://doi.org/10.13039/501100005072, Japanese Circulation Society (JCS);
                Funded by: FundRef https://doi.org/10.13039/100009619, Japan Agency for Medical Research and Development (AMED);
                Award ID: JP18bm0404026
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                senescence,machine learning,drug development
                Uncategorized
                senescence, machine learning, drug development

                Comments

                Comment on this article