0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Operational Data-Driven Intelligent Modelling and Visualization System for Real-World, On-Road Vehicle Emissions—A Case Study in Hangzhou City, China

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          On-road vehicle emissions play a crucial role in affecting air quality and human exposure, particularly in megacities. In the absence of comprehensive traffic monitoring networks with the general lack of intelligent transportation systems (ITSs) and big-data-driven, high-performance-computing (HPC) platforms, it remains challenging to constrain on-road vehicle emissions and capture their hotspots. Here, we established an intelligent modelling and visualization system driven by ITS traffic data for real-world, on-road vehicle emissions. Based on the HPC platform (named “City Brain”) and an agile Web Geographic Information System (WebGISs), this system can map real-time (hourly), hyperfine (10~1000 m) vehicle emissions (e.g., PM2.5, NOx, CO, and HC) and associated traffic states (e.g., vehicle-specific categories and traffic fluxes) over the Xiaoshan District in Hangzhou. Our results show sharp variations in on-road vehicle emissions on small scales, which even fluctuated up to 31.2 times within adjacent road links. Frequent and widespread emission hotspots were also exposed. Over custom spatiotemporal scopes, we virtually investigated and visualized the impacts of traffic control policies on the traffic states and on-road vehicle emissions. Such results have important implications for how traffic control policies should be optimized. Integrating this system with chemical transport models and air quality measurements would bridge the technical gap between air pollutant emissions, concentrations, and human exposure.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution

          The mandate of the Task Force Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions data set has been constructed using regional emission grid maps (annual and monthly) for SO 2 , NO x , CO, NMVOC, NH 3 , PM 10 , PM 2.5 , BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories – including that of the Environmental Protection Agency (EPA) for USA, the EPA and Environment Canada (for Canada), the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO) for Europe, and the Model Inter-comparison Study for Asia (MICS-Asia III) for China, India and other Asian countries – was gap-filled with the emission grid maps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific grid maps for each substance and year. The HTAP_v2.2 air pollutant grid maps are considered to combine latest available regional information within a complete global data set. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission grid maps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for acidifying gaseous air pollutant emissions (SO 2 and NO x ) from the energy and industry sectors. This is not observed for the particulate matter emissions (PM 10 , PM 2.5 ), which show large differences between countries in the residential sector instead. The per capita emissions of all world countries, classified from low to high income, reveal an increase in level and in variation for gaseous acidifying pollutants, but not for aerosols. For aerosols, an opposite trend is apparent with higher per capita emissions of particulate matter for low income countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP

            The MIX inventory is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) by a mosaic of up-to-date regional emission inventories. Emissions are estimated for all major anthropogenic sources in 29 countries and regions in Asia. We conducted detailed comparisons of different regional emission inventories and incorporated the best available ones for each region into the mosaic inventory at a uniform spatial and temporal resolution. Emissions are aggregated to five anthropogenic sectors: power, industry, residential, transportation, and agriculture. We estimate the total Asian emissions of 10 species in 2010 as follows: 51.3 Tg SO 2 , 52.1 Tg NO x , 336.6 Tg CO, 67.0 Tg NMVOC (non-methane volatile organic compounds), 28.8 Tg NH 3 , 31.7 Tg PM 10 , 22.7 Tg PM 2.5 , 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO 2 . Emissions from China and India dominate the emissions of Asia for most of the species. We also estimated Asian emissions in 2006 using the same methodology of MIX. The relative change rates of Asian emissions for the period of 2006–2010 are estimated as follows: −8.1 % for SO 2 , +19.2 % for NO x , +3.9 % for CO, +15.5 % for NMVOC, +1.7 % for NH 3 , −3.4 % for PM 10 , −1.6 % for PM 2.5 , +5.5 % for BC, +1.8 % for OC, and +19.9 % for CO 2 . Model-ready speciated NMVOC emissions for SAPRC-99 and CB05 mechanisms were developed following a profile-assignment approach. Monthly gridded emissions at a spatial resolution of 0.25°  ×  0.25° are developed and can be accessed from http://www.meicmodel.org/dataset-mix .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data.

              Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km(2) area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO2, and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.
                Bookmark

                Author and article information

                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                May 2022
                April 30 2022
                : 14
                : 9
                : 5434
                Article
                10.3390/su14095434
                1f3cd2d4-f668-4194-bf63-d0ec84452217
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article