41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pandemic Preparedness and Response — Lessons from the H1N1 Influenza of 2009

      New England Journal of Medicine
      Massachusetts Medical Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies.

          Influenza viruses pose a significant threat to the public and are a burden on global health systems. Each year, influenza vaccines must be rapidly produced to match circulating viruses, a process constrained by dated technology and vulnerable to unexpected strains emerging from humans and animal reservoirs. Here we use knowledge of protein structure to design self-assembling nanoparticles that elicit broader and more potent immunity than traditional influenza vaccines. The viral haemagglutinin was genetically fused to ferritin, a protein that naturally forms nanoparticles composed of 24 identical polypeptides. Haemagglutinin was inserted at the interface of adjacent subunits so that it spontaneously assembled and generated eight trimeric viral spikes on its surface. Immunization with this influenza nanoparticle vaccine elicited haemagglutination inhibition antibody titres more than tenfold higher than those from the licensed inactivated vaccine. Furthermore, it elicited neutralizing antibodies to two highly conserved vulnerable haemagglutinin structures that are targets of universal vaccines: the stem and the receptor binding site on the head. Antibodies elicited by a 1999 haemagglutinin-nanoparticle vaccine neutralized H1N1 viruses from 1934 to 2007 and protected ferrets from an unmatched 2007 H1N1 virus challenge. This structure-based, self-assembling synthetic nanoparticle vaccine improves the potency and breadth of influenza virus immunity, and it provides a foundation for building broader vaccine protection against emerging influenza viruses and other pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Critically Ill patients with 2009 influenza A(H1N1) in Mexico.

            In March 2009, novel 2009 influenza A(H1N1) was first reported in the southwestern United States and Mexico. The population and health care system in Mexico City experienced the first and greatest early burden of critical illness. To describe baseline characteristics, treatment, and outcomes of consecutive critically ill patients in Mexico hospitals that treated the majority of such patients with confirmed, probable, or suspected 2009 influenza A(H1N1). Observational study of 58 critically ill patients with 2009 influenza A(H1N1) at 6 hospitals between March 24 and June 1, 2009. Demographic data, symptoms, comorbid conditions, illness progression, treatments, and clinical outcomes were collected using a piloted case report form. The primary outcome measure was mortality. Secondary outcomes included rate of 2009 influenza (A)H1N1-related critical illness and mechanical ventilation as well as intensive care unit (ICU) and hospital length of stay. Critical illness occurred in 58 of 899 patients (6.5%) admitted to the hospital with confirmed, probable, or suspected 2009 influenza (A)H1N1. Patients were young (median, 44.0 [range, 10-83] years); all presented with fever and all but 1 with respiratory symptoms. Few patients had comorbid respiratory disorders, but 21 (36%) were obese. Time from hospital to ICU admission was short (median, 1 day [interquartile range {IQR}, 0-3 days]), and all patients but 2 received mechanical ventilation for severe acute respiratory distress syndrome and refractory hypoxemia (median day 1 ratio of Pao(2) to fraction of inspired oxygen, 83 [IQR, 59-145] mm Hg). By 60 days, 24 patients had died (41.4%; 95% confidence interval, 28.9%-55.0%). Patients who died had greater initial severity of illness, worse hypoxemia, higher creatine kinase levels, higher creatinine levels, and ongoing organ dysfunction. After adjusting for a reduced opportunity of patients dying early to receive neuraminidase inhibitors, neuraminidase inhibitor treatment (vs no treatment) was associated with improved survival (odds ratio, 8.5; 95% confidence interval, 1.2-62.8). Critical illness from 2009 influenza A(H1N1) in Mexico occurred in young individuals, was associated with severe acute respiratory distress syndrome and shock, and had a high case-fatality rate.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Digital disease detection--harnessing the Web for public health surveillance.

                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                April 03 2014
                April 03 2014
                : 370
                : 14
                : 1335-1342
                Article
                10.1056/NEJMra1208802
                24693893
                1fd29507-3159-44d7-a50e-9e4919e026c3
                © 2014
                History

                Comments

                Comment on this article