17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression of the O-Glycosylation Enzyme GalNAc-T3 in the Equatorial Segment Correlates with the Quality of Spermatozoa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We question whether the expression of GalNAc-T3, the only known O-GalNAc-transferase present in germ cells, is correlated with qualitative and functional parameters of spermatozoa. We investigated the expression of GalNAc-T3 in ejaculated spermatozoa with immunocytochemistry in swim-up purified and acrosome-reacted spermatozoa from quality-control semen donors and in semen samples from 206 randomly selected men representing a broad spectrum of semen quality. Using donor ejaculates and immunofluorescence detection we found that expression of GalNAc-T3 and the presence of the immature O-glycans Tn and T localized to the equatorial segment of spermatozoa. The proportion of GalNAc-T3-positive spermatozoa in the ejaculate increased after swim-up and appeared unaffected by induction of acrosomal exocytosis. The fraction of spermatozoa with equatorial expression of GalNAc-T3 correlated with classical semen parameters (concentration p = 9 × 10 −6, morphology p = 7 × 10 −8, and motility p = 1.8 × 10 −5) and was significantly lower in men with oligoteratoasthenozoospermia ( p = 0.0048). In conclusion, GalNAc-T3 was highly expressed by motile spermatozoa and the expression correlated positively with the classical semen parameters. Therefore, GalNAc-T3 expression seems related to the quality of the spermatozoa, and we propose that reduced expression of GalNAc-T3 may lead to impaired O-glycosylation of proteins and thereby abnormal maturation and reduced functionality of the spermatozoa.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family.

          Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines.

            Zinc-finger nuclease (ZFN) gene targeting is emerging as a versatile tool for engineering of multiallelic gene deficiencies. A longstanding obstacle for detailed analysis of glycoproteomes has been the extensive heterogeneities in glycan structures and attachment sites. Here we applied ZFN targeting to truncate the O-glycan elongation pathway in human cells, generating stable 'SimpleCell' lines with homogenous O-glycosylation. Three SimpleCell lines expressing only truncated GalNAcα or NeuAcα2-6GalNAcα O-glycans were produced, allowing straightforward isolation and sequencing of GalNAc O-glycopeptides from total cell lysates using lectin chromatography and nanoflow liquid chromatography-mass spectrometry (nLC-MS/MS) with electron transfer dissociation fragmentation. We identified >100 O-glycoproteins with >350 O-glycan sites (the great majority previously unidentified), including a GalNAc O-glycan linkage to a tyrosine residue. The SimpleCell method should facilitate analyses of important functions of protein glycosylation. The strategy is also applicable to other O-glycoproteomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calcium channels in the development, maturation, and function of spermatozoa.

              A proper dialogue between spermatozoa and the egg is essential for conception of a new individual in sexually reproducing animals. Ca(2+) is crucial in orchestrating this unique event leading to a new life. No wonder that nature has devised different Ca(2+)-permeable channels and located them at distinct sites in spermatozoa so that they can help fertilize the egg. New tools to study sperm ionic currents, and image intracellular Ca(2+) with better spatial and temporal resolution even in swimming spermatozoa, are revealing how sperm ion channels participate in fertilization. This review critically examines the involvement of Ca(2+) channels in multiple signaling processes needed for spermatozoa to mature, travel towards the egg, and fertilize it. Remarkably, these tiny specialized cells can express exclusive channels like CatSper for Ca(2+) and SLO3 for K(+), which are attractive targets for contraception and for the discovery of novel signaling complexes. Learning more about fertilization is a matter of capital importance; societies face growing pressure to counteract rising male infertility rates, provide safe male gamete-based contraceptives, and preserve biodiversity through improved captive breeding and assisted conception initiatives.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                27 September 2018
                October 2018
                : 19
                : 10
                : 2949
                Affiliations
                [1 ]Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; marie.berg.nygaard@ 123456regionh.dk (M.B.N.); menisca@ 123456gmail.com (A.S.H.); JOHN.ERIK.NIELSEN@ 123456regionh.dk (J.E.N.); Niels.Joergensen@ 123456regionh.dk (N.J.); Ewa.Rajpert-De.Meyts@ 123456regionh.dk (E.R.-D.M.)
                [2 ]The Fertility Clinic, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
                [3 ]Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; charlotte.jeanneau@ 123456univ-amu.fr (C.J.); epb@ 123456sund.ku.dk (E.P.B.); hclau@ 123456sund.ku.dk (H.C.); ulma@ 123456sund.ku.dk (U.M.)
                [4 ]International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
                Author notes
                [* ]Correspondence: kristian.almstrup@ 123456regionh.dk ; Tel.: +45-35456639
                Author information
                https://orcid.org/0000-0002-1832-0307
                Article
                ijms-19-02949
                10.3390/ijms19102949
                6212898
                30262754
                1fda3da6-e217-4b77-a315-58ba7f067cb6
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 September 2018
                : 25 September 2018
                Categories
                Article

                Molecular biology
                galnac-t3,galnt3,male fertility,semen quality,mucin-type o-linked glycosylation,spermatozoa

                Comments

                Comment on this article