7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Archaeal SepF is essential for cell division in Haloferax volcanii

      Preprint
      , , , ,
      bioRxiv

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacterial cell division has been studied for decades but reports on the different archaeal cell division systems are rare. In many archaea, cell division depends on the tubulin homolog FtsZ, but further components of the divisome in these archaea are unknown. The halophilic archaeon Haloferax volcanii encodes two FtsZ homologs with different functions in cell division and a putative SepF homolog. In bacteria, SepF is part of the divisome and is recruited early to the FtsZ ring, where it most likely stimulates FtsZ ring formation. H. volcanii SepF co-localized with FtsZ1 and FtsZ2 at midcell. Overexpression of SepF had no effect on cell morphology, but no sepF deletion mutants could be generated. SepF depletion led to a severe cell division defect, resulting in cells with a strongly increased size. Overexpression of FtsZ1- and FtsZ2-GFP in SepF-depleted cells resulted in filamentous cells with an increasing number of FtsZ1 rings depending on the cell length, whereas FtsZ2 rings were not increased. Pull-down assays with HA-tagged SepF identified an interaction with FtsZ2 but not with FtsZ1. Archaeal SepF homologs lack the conserved glycine residue important for polymerization in bacteria and the H. volcanii SepF was purified as a dimer, suggesting that in contrast to the bacterial SepF homologs, polymerization does not seem to be important for its function. A model is proposed where first the FtsZ1 ring is formed and where SepF recruits FtsZ2 to the FtsZ1 ring, resulting in the formation of the FtsZ2 ring. This study provides important novel insights into cell division in archaea and shows that SepF is an important part of the divisome in FtsZ containing archaea.

          Related collections

          Author and article information

          Journal
          bioRxiv
          October 06 2020
          Article
          10.1101/2020.10.06.327809
          1ffc01fa-883c-4bd0-a4b5-c37bc1f710fa
          © 2020
          History

          Microbiology & Virology
          Microbiology & Virology

          Comments

          Comment on this article