2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      National experience in the first two years of primary human papillomavirus (HPV) cervical screening in an HPV vaccinated population in Australia: observational study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To review the first two years of the primary human papillomavirus (HPV) cervical screening programme in an HPV vaccinated population.

          Design

          Observational study.

          Setting

          Australia.

          Participants

          3 745 318 women with a primary HPV test between 1 December 2017 and 31 December 2019; most women aged <40 years had previously been offered vaccination against HPV16 and HPV18.

          Interventions

          Primary HPV screening with referral if HPV16 or HPV18 (HPV16/18) positive and triage with liquid based cytology testing (threshold atypical squamous cells-cannot exclude high grade squamous intraepithelial lesion) for women who were positive for high risk HPV types other than 16/18. A 12 month follow-up HPV test was recommended in triaged women with a negative or low grade cytology result, with referral if they tested positive for any high risk HPV type at follow-up.

          Main outcome measures

          Proportion of women who had attended for their first HPV screening test, tested positive, and were referred for colposcopy; and short term risk of detecting cervical intraepithelial neoplasia (CIN) grade 2 or worse, CIN grade 3 or worse, or cancer.

          Results

          54.6% (n=3 507 281) of an estimated 6 428 677 eligible women aged 25-69 had undergone their first HPV test by the end of 2019. Among those attending for routine screening, positivity for HPV16/18 and for HPV types not 16/18 was, respectively, 2.0% and 6.6% in women aged 25-69 (n=3 045 844) and 2.2% and 13.3% in highly vaccinated cohorts of women aged 25-34 (n=768 362). Colposcopy referral (ages 25-69 years) was 3.5%, increasing to an estimated 6.2% after accounting for women who had not yet had a 12 month repeat test. Cervical cancer was detected in 0.98% (456/46 330) of women positive for HPV16/18 at baseline, including 0.32% (89/28 003) of women with HPV16/18 and negative cytology. Women with HPV types not 16/18 and negative or low grade cytology at both baseline and 12 months were at low risk of serious disease (3.4% CIN grade 3 or worse; 0.02% cancer; n=20 019) but estimated to account for 62.0% of referrals for this screening algorithm.

          Conclusions

          Colposcopy referral thresholds need to consider underlying cancer risk; on this basis, women with HPV16/18 in the first round of HPV screening were found to be at higher risk regardless of cytology result, even in a previously well screened population. Women with HPV types not 16/18 and negative or low grade cytology showed a low risk of serious abnormalities but constitute most referrals and could be managed safely with two rounds of repeat HPV testing rather than one. HPV16/18 driven referrals were low in HPV vaccinated cohorts.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials.

          In four randomised trials, human papillomavirus (HPV)-based screening for cervical cancer was compared with cytology-based cervical screening, and precursors of cancer were the endpoint in every trial. However, direct estimates are missing of the relative efficacy of HPV-based versus cytology-based screening for prevention of invasive cancer in women who undergo regular screening, of modifiers (eg, age) of this relative efficacy, and of the duration of protection. We did a follow-up study of the four randomised trials to investigate these outcomes. 176,464 women aged 20-64 years were randomly assigned to HPV-based (experimental arm) or cytology-based (control arm) screening in Sweden (Swedescreen), the Netherlands (POBASCAM), England (ARTISTIC), and Italy (NTCC). We followed up these women for a median of 6·5 years (1,214,415 person-years) and identified 107 invasive cervical carcinomas by linkage with screening, pathology, and cancer registries, by masked review of histological specimens, or from reports. Cumulative and study-adjusted rate ratios (experimental vs control) were calculated for incidence of invasive cervical carcinoma. The rate ratio for invasive cervical carcinoma among all women from recruitment to end of follow-up was 0·60 (95% CI 0·40-0·89), with no heterogeneity between studies (p=0·52). Detection of invasive cervical carcinoma was similar between screening methods during the first 2·5 years of follow-up (0·79, 0·46-1·36) but was significantly lower in the experimental arm thereafter (0·45, 0·25-0·81). In women with a negative screening test at entry, the rate ratio was 0·30 (0·15-0·60). The cumulative incidence of invasive cervical carcinoma in women with negative entry tests was 4·6 per 10(5) (1·1-12·1) and 8·7 per 10(5) (3·3-18·6) at 3·5 and 5·5 years, respectively, in the experimental arm, and 15·4 per 10(5) (7·9-27·0) and 36·0 per 10(5) (23·2-53·5), respectively, in the control arm. Rate ratios did not differ by cancer stage, but were lower for adenocarcinoma (0·31, 0·14-0·69) than for squamous-cell carcinoma (0·78, 0·49-1·25). The rate ratio was lowest in women aged 30-34 years (0·36, 0·14-0·94). HPV-based screening provides 60-70% greater protection against invasive cervical carcinomas compared with cytology. Data of large-scale randomised trials support initiation of HPV-based screening from age 30 years and extension of screening intervals to at least 5 years. European Union, Belgian Foundation Against Cancer, KCE-Centre d'Expertise, IARC, The Netherlands Organisation for Health Research and Development, the Italian Ministry of Health. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries

            Summary Background The WHO Director-General has issued a call for action to eliminate cervical cancer as a public health problem. To help inform global efforts, we modelled potential human papillomavirus (HPV) vaccination and cervical screening scenarios in low-income and lower-middle-income countries (LMICs) to examine the feasibility and timing of elimination at different thresholds, and to estimate the number of cervical cancer cases averted on the path to elimination. Methods The WHO Cervical Cancer Elimination Modelling Consortium (CCEMC), which consists of three independent transmission-dynamic models identified by WHO according to predefined criteria, projected reductions in cervical cancer incidence over time in 78 LMICs for three standardised base-case scenarios: girls-only vaccination; girls-only vaccination and once-lifetime screening; and girls-only vaccination and twice-lifetime screening. Girls were vaccinated at age 9 years (with a catch-up to age 14 years), assuming 90% coverage and 100% lifetime protection against HPV types 16, 18, 31, 33, 45, 52, and 58. Cervical screening involved HPV testing once or twice per lifetime at ages 35 years and 45 years, with uptake increasing from 45% (2023) to 90% (2045 onwards). The elimination thresholds examined were an average age-standardised cervical cancer incidence of four or fewer cases per 100 000 women-years and ten or fewer cases per 100 000 women-years, and an 85% or greater reduction in incidence. Sensitivity analyses were done, varying vaccination and screening strategies and assumptions. We summarised results using the median (range) of model predictions. Findings Girls-only HPV vaccination was predicted to reduce the median age-standardised cervical cancer incidence in LMICs from 19·8 (range 19·4–19·8) to 2·1 (2·0–2·6) cases per 100 000 women-years over the next century (89·4% [86·2–90·1] reduction), and to avert 61·0 million (60·5–63·0) cases during this period. Adding twice-lifetime screening reduced the incidence to 0·7 (0·6–1·6) cases per 100 000 women-years (96·7% [91·3–96·7] reduction) and averted an extra 12·1 million (9·5–13·7) cases. Girls-only vaccination was predicted to result in elimination in 60% (58–65) of LMICs based on the threshold of four or fewer cases per 100 000 women-years, in 99% (89–100) of LMICs based on the threshold of ten or fewer cases per 100 000 women-years, and in 87% (37–99) of LMICs based on the 85% or greater reduction threshold. When adding twice-lifetime screening, 100% (71–100) of LMICs reached elimination for all three thresholds. In regions in which all countries can achieve cervical cancer elimination with girls-only vaccination, elimination could occur between 2059 and 2102, depending on the threshold and region. Introducing twice-lifetime screening accelerated elimination by 11–31 years. Long-term vaccine protection was required for elimination. Interpretation Predictions were consistent across our three models and suggest that high HPV vaccination coverage of girls can lead to cervical cancer elimination in most LMICs by the end of the century. Screening with high uptake will expedite reductions and will be necessary to eliminate cervical cancer in countries with the highest burden. Funding WHO, UNDP, UN Population Fund, UNICEF–WHO–World Bank Special Program of Research, Development and Research Training in Human Reproduction, Canadian Institute of Health Research, Fonds de recherche du Québec–Santé, Compute Canada, National Health and Medical Research Council Australia Centre for Research Excellence in Cervical Cancer Control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human papillomavirus testing for the detection of high-grade cervical intraepithelial neoplasia and cancer: final results of the POBASCAM randomised controlled trial.

              Human papillomavirus (HPV) testing is more sensitive for the detection of high-grade cervical lesions than is cytology, but detection of HPV by DNA screening in two screening rounds 5 years apart has not been assessed. The aim of this study was to assess whether HPV DNA testing in the first screen decreases detection of cervical intraepithelial neoplasia (CIN) grade 3 or worse, CIN grade 2 or worse, and cervical cancer in the second screening. In this randomised trial, women aged 29-56 years participating in the cervical screening programme in the Netherlands were randomly assigned to receive HPV DNA (GP5+/6+-PCR method) and cytology co-testing or cytology testing alone, from January, 1999, to September, 2002. Randomisation (in a 1:1 ratio) was done with computer-generated random numbers after the cervical specimen had been taken. At the second screening 5 years later, HPV DNA and cytology co-testing was done in both groups; researchers were masked to the patient's assignment. The primary endpoint was the number of CIN grade 3 or worse detected. Analysis was done by intention to screen. The trial is now finished and is registered, number ISRCTN20781131. 22,420 women were randomly assigned to the intervention group and 22 518 to the control group; 19 999 in the intervention group and 20,106 in the control group were eligible for analysis at the first screen. At the second screen, 19 579 women in the intervention group and 19,731 in the control group were eligible, of whom 16,750 and 16,743, respectively, attended the second screen. In the second round, CIN grade 3 or worse was less common in the intervention group than in the control group (88 of 19 579 in the intervention group vs 122 of 19,731 in the control group; relative risk 0·73, 95% CI 0·55-0·96; p=0·023). Cervical cancer was also less common in the intervention group than in the control group (four of 19 579 in the intervention group vs 14 of 19,731; 0·29, 0·10-0·87; p=0·031). In the baseline round, detection of CIN grade 3 or worse did not differ significantly between groups (171 of 19 999 vs 150 of 20,106; 1·15, 0·92-1·43; p=0·239) but was significantly more common in women with normal cytology (34 of 19,286 vs 12 of 19,373; 2·85, 1·47-5·49; p=0·001). Furthermore, significantly more cases of CIN grade 2 or worse were detected in the intervention group than in the control group (267 of 19 999 vs 215 of 20,106; 1·25, 1·05-1·50; p=0·015). In the second screen, fewer HPV16-positive CIN grade 3 or worse were detected in the intervention group than in the control group (17 of 9481 vs 35 of 9354; 0·48, 0·27-0·85; p=0·012); detection of non-HPV16-positive CIN grade 3 or worse did not differ between groups (25 of 9481 vs 25 of 9354; 0·99, 0·57-1·72; p=1·00). The cumulative detection of CIN grade 3 or worse and CIN grade 2 or worse did not differ significantly between study arms, neither for the whole study group (CIN grade 3 or worse: 259 of 19 999 vs 272 of 20,106; 0·96, 0·81-1·14, p=0·631; CIN grade 2 or worse: 427 of 19 999 vs 399 of 20,106; 1·08, 0·94-1·24; p=0·292), nor for subgroups of women invited for the first time (CIN grade 3 or worse in women aged 29-33 years: 102 of 3139 vs 105 of 3128; 0·97, 0·74-1·27; CIN grade 2 or worse in women aged 29-33 years: 153 of 3139 vs 151 of 3128; 1·01, 0·81-1·26; CIN grade 3 or worse in women aged 34-56 years: 157 of 16,860 vs 167 of 16 978; 0·95, 0·76-1·18; CIN grade 2 or worse in women aged 34-56 years: 274 of 16,860 vs 248 of 16 978; 1·11, 0·94-1·32). Implementation of HPV DNA testing in cervical screening leads to earlier detection of clinically relevant CIN grade 2 or worse, which when adequately treated, improves protection against CIN grade 3 or worse and cervical cancer. Early detection of high-grade cervical legions caused by HPV16 was a major component of this benefit. Our results lend support to the use of HPV DNA testing for all women aged 29 years and older. Zorg Onderzoek Nederland (Netherlands Organisation for Health Research and Development). Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: associate professor
                Role: data analyst
                Role: epidemiologist and honorary research fellow
                Role: director
                Role: coordinator and professor
                Role: medical director and honorary professor
                Role: senior research fellow
                Role: consultant gynaecologist and honorary senior lecturer
                Role: honorary clinical associate professor and executive director
                Role: director and professor
                Journal
                BMJ
                BMJ
                BMJ-UK
                bmj
                The BMJ
                BMJ Publishing Group Ltd.
                0959-8138
                1756-1833
                2022
                30 March 2022
                : 376
                : e068582
                Affiliations
                [1 ]The Daffodil Centre, University of Sydney, a joint venture with Cancer Council NSW, Sydney NSW 2011 Australia
                [2 ]National Cancer Screening Register, Telstra Health, Melbourne, VIC, Australia
                [3 ]Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
                [4 ]Division of Cancer Prevention, and Senior Investigator, Division of Cancer Epidemiology and Genetics, US National Cancer Institute, NIH, Rockville, MD, USA
                [5 ]Unit of Cancer Epidemiology, Belgian Cancer Centre, Sciensano, Brussels, Belgium
                [6 ]Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, University Ghent, Ghent, Belgium
                [7 ]Oncology and Dysplasia Unit, The Royal Women’s Hospital, Melbourne, VIC, Australia
                [8 ]Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
                [9 ]Australian Centre for the Prevention of Cervical Cancer, Melbourne, VIC, Australia
                [10 ]Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
                Author notes
                Correspondence to: M A Smith megan.smith@ 123456nswcc.org.au (or @ms_miff on Twitter)
                Author information
                https://orcid.org/0000-0002-0401-2653
                Article
                bmj-2021-068582.R1 smim068582
                10.1136/bmj-2021-068582
                8965648
                35354610
                2015cd2d-2886-4320-8bc0-c166b14a341e
                © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 11 February 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001171, Cancer Institute NSW;
                Funded by: FundRef http://dx.doi.org/10.13039/501100000925, National Health and Medical Research Council;
                Categories
                Research

                Medicine
                Medicine

                Comments

                Comment on this article