1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Insertional Inactivation and Gene Complementation of Prevotella intermedia Type IX Secretion System Reveals Its Indispensable Roles in Black Pigmentation, Hemagglutination, Protease Activity of Interpain A, and Biofilm Formation

      1 , 1 , 2 , 1
      Journal of Bacteriology
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The virulence factors of periodontal pathogens such as Prevotella intermedia have not been elucidated. Using our established procedure, we succeeded in generating type IX secretion system mutants and gene complementation strains that might transfer virulence factors to the bacterial surface.

          ABSTRACT

          Prevotella intermedia , a Gram-negative oral anaerobic bacterium, is frequently isolated from the periodontal pockets of patients with chronic periodontitis. In recent years, the involvement of the bacterium in respiratory tract infections as well as in oral infections has been revealed. P. intermedia possesses several potent virulence factors, such as cysteine proteinase interpain A encoded by the inpA gene. The genome of P. intermedia carries genes of the type IX secretion system (T9SS), which enables the translocation of virulence factors across the outer membrane in several pathogens belonging to the phylum Bacteroidetes ; however, it is still unclear whether the T9SS is functional in this microorganism. Recently, we performed targeted mutagenesis in the strain OMA14 of P. intermedia . Here, we successfully obtained mutants deficient in inpA and the T9SS component genes porK and porT . None of the mutants exhibited protease activity of interpain A. The porK and porT mutants, but not the inpA mutant, showed defects in colony pigmentation, hemagglutination, and biofilm formation. We also obtained a complemented strain for the porK gene that recovered all the above abilities. These results indicate that T9SS functions in P. intermedia and that interpain A is one of the T9SS cargo proteins.

          IMPORTANCE The virulence factors of periodontal pathogens such as Prevotella intermedia have not been elucidated. Using our established procedure, we succeeded in generating type IX secretion system mutants and gene complementation strains that might transfer virulence factors to the bacterial surface. The generated strains clearly indicate that T9SS in P. intermedia is essential for colonial pigmentation, hemagglutination, and biofilm formation. These results indicated that interpain A is a T9SS cargo protein.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          The biofilm matrix.

          The microorganisms in biofilms live in a self-produced matrix of hydrated extracellular polymeric substances (EPS) that form their immediate environment. EPS are mainly polysaccharides, proteins, nucleic acids and lipids; they provide the mechanical stability of biofilms, mediate their adhesion to surfaces and form a cohesive, three-dimensional polymer network that interconnects and transiently immobilizes biofilm cells. In addition, the biofilm matrix acts as an external digestive system by keeping extracellular enzymes close to the cells, enabling them to metabolize dissolved, colloidal and solid biopolymers. Here we describe the functions, properties and constituents of the EPS matrix that make biofilms the most successful forms of life on earth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial biofilms.

            Direct observations have clearly shown that biofilm bacteria predominate, numerically and metabolically, in virtually all nutrient-sufficient ecosystems. Therefore, these sessile organisms predominate in most of the environmental, industrial, and medical problems and processes of interest to microbiologists. If biofilm bacteria were simply planktonic cells that had adhered to a surface, this revelation would be unimportant, but they are demonstrably and profoundly different. We first noted that biofilm cells are at least 500 times more resistant to antibacterial agents. Now we have discovered that adhesion triggers the expression of a sigma factor that derepresses a large number of genes so that biofilm cells are clearly phenotypically distinct from their planktonic counterparts. Each biofilm bacterium lives in a customized microniche in a complex microbial community that has primitive homeostasis, a primitive circulatory system, and metabolic cooperativity, and each of these sessile cells reacts to its special environment so that it differs fundamentally from a planktonic cell of the same species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples

              Background To understand the relationship between our bacterial microbiome and health, it is essential to define the microbiome in the absence of disease. The digestive tract includes diverse habitats and hosts the human body's greatest bacterial density. We describe the bacterial community composition of ten digestive tract sites from more than 200 normal adults enrolled in the Human Microbiome Project, and metagenomically determined metabolic potentials of four representative sites. Results The microbiota of these diverse habitats formed four groups based on similar community compositions: buccal mucosa, keratinized gingiva, hard palate; saliva, tongue, tonsils, throat; sub- and supra-gingival plaques; and stool. Phyla initially identified from environmental samples were detected throughout this population, primarily TM7, SR1, and Synergistetes. Genera with pathogenic members were well-represented among this disease-free cohort. Tooth-associated communities were distinct, but not entirely dissimilar, from other oral surfaces. The Porphyromonadaceae, Veillonellaceae and Lachnospiraceae families were common to all sites, but the distributions of their genera varied significantly. Most metabolic processes were distributed widely throughout the digestive tract microbiota, with variations in metagenomic abundance between body habitats. These included shifts in sugar transporter types between the supragingival plaque, other oral surfaces, and stool; hydrogen and hydrogen sulfide production were also differentially distributed. Conclusions The microbiomes of ten digestive tract sites separated into four types based on composition. A core set of metabolic pathways was present across these diverse digestive tract habitats. These data provide a critical baseline for future studies investigating local and systemic diseases affecting human health.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Bacteriology
                J Bacteriol
                American Society for Microbiology
                0021-9193
                1098-5530
                August 16 2022
                August 16 2022
                : 204
                : 8
                Affiliations
                [1 ]Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
                [2 ]Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
                Article
                10.1128/jb.00203-22
                35862729
                20547a5f-3b59-4315-8574-76284080f0f1
                © 2022

                https://doi.org/10.1128/ASMCopyrightv2

                https://journals.asm.org/non-commercial-tdm-license

                History

                Comments

                Comment on this article